
How to Improve Code Vectorization
 

The Haswell Galileo  CPUs in CINECA compute nodes and 256-bit vector registers and AVX/ Broadwell CPUs in the Marconi nodes provide  AVX2 
. The Xeon Phi CPUs in the KNL nodes provide  . To get (Advanced Vector Extensions) instruction sets 512-bit vector registers and AVX-512 instruction sets

the most performance out of these processors, users need to take advantage of these strengths and try to improve the usage of vectorization instructions 
in their code. This document provides a guideline on how to get vectorization information and improve code vectorization.

Get Vectorization Information
There are various ways to get information regarding how a code is vectorized. The following information is for Intel compilers. For GCC compilers please 
refer to the corresponding man page or documentation.

1.The compiler option '-S' can be used to generate assembly code instead of binary. In the assembly code, SSE vector instructions generally 
operate on xmm registers, AVX and AVX2 on ymm registers, and AVX512 on zmm registers. AVX, AVX2, and AVX512 instructions are prefixed 
with 'v'.

Example of compiling a C++ program to generate assembly code instead of binary code:

 

icpc -S -o vec_add.s vec_add.cc

 

Example of generated vectorized assembly code:

 

vldmxcsr  64(%
rsp)                                     
vaddpd    (%rsp), %zmm0, %
zmm1                         
vmovupd   %zmm1, (%rsp)

 

2.Compiler option '-qopt-report=5' can be used to generate an optimization report, which contains   information. To generate report vectorization
for vectorization only, use "-qopt-report -qopt-report-phase=vec".

Compile and link Fortran/C/C++ program using corresponding Intel compiler with the vectorization option:

Example:

 

module load intel
icc -g -qopenmp -O2 example.c –o example

 

Some Intel compiler options are listed below:

 

-g Build application with debug information to allow binary-to-source correlation in the reports.

-qopenmp Enable generation of multi-threaded code if OpenMP directives/pragmas exist.

-O2 (or higher) Request compiler optimization.

-vec Enable vectorization if option O2 or higher is in effect (enabled by default).

-simd Enable SIMD directives/pragmas (enabled by default).

For details of these options refer to man page or documentations of Intel compilers.

 



Explicit Vectorization

Compiler SIMD directives/pragmas

Users can add compiler SIMD directives/pragmas to the source code to tell the compiler that dependency does not exist, so that the compiler can vectorize 
the loop when the user re-compiles the modified source code. Such SIMD directives/pragmas include:

 

#pragma vector always: instruct to vectorize a loop if it is safe to do so
#pragma vector align: assert that data within the loop is aligned on 16B boundary
#pragma ivdep: instruct the compiler to ignore potential data dependencies
#pragma simd: enforce vectorization of a loop

 

OpenMP directives/pragmas

Users can use OpenMP 4.0 new directives/pragmas for explicit vectorization:

 

#pragma omp simd: enforce vectorization of a loop
#pragma omp declare simd: instruct the compiler to vectorize a function
#pragma omp parallel for simd: target same loop for threading and SIMD, with each thread executing SIMD 
instructions

 

SIMD enabled functions

Users can also declare and use  . In the example below, function foo is declared as a SIMD enabled function (vector function), so it SIMD enabled functions
is vectorized. So is the for loop in which it is called.

 

__attribute(vector)
float foo(float);
void    vfoo(float *restrict a, float *restrict b, int n)
{
    int i;
    for (i=0; i<n; i++) { a[i] = foo(b[i]); }
}
float  foo(float x) { ... }

 

Programming Guidelines for Writing Vectorizable Code
Use simple loops, avoid variant upper iteration limit and data-dependent loop exit conditions
Write straight-line code: avoid branches, most function calls or   constructsif
Use array notations instead of pointers
Use unit stride (increment 1 for each iteration) in inner loops
Use aligned data layout (memory addresses)
Use structure of arrays instead of arrays of structures
Use only assignment statements in the innermost loops
Avoid data dependencies between loop iterations, such as read-after-write, write-after-read, write-after-write
Avoid indirect addressing
Avoid mixing vectorizable types in the same loop
Avoid functions calls in innermost loop, except math library calls


	How to Improve Code Vectorization

