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Technical sheet

:Model  IBM-BlueGene /Q
Architecture: 10 BGQ Frame 
with 2 MidPlanes each
Front-end Nodes OS: Red-Hat 
EL 6.2
Compute Node Kernel:
 lightweight Linux-like kernel

:Processor Type  IBM 
PowerA2, 1.6 GHz

:Computing Nodes
  10.240  with 16 cores each

:Computing Cores   163.840
:RAM  16GB / node; 1GB/core 

:Internal Network  Network 
interface 
                               with 11 
links ->5D Torus

:Disk Space   more than 2PB 
of scratch space 

:Peak Performance  2.1 PFlop
/s

System Architecture

FERMI is a BlueGene/Q system and has a massively parallel architecture. In the following picture we show how the system is built up.

 

Each Compute Card (which we call a  ) features an IBM PowerA2 chip with 16 cores working at a frequency of 1.6 GHz, 16 GB of RAM "compute node"
and the network connections. A total of 32 compute nodes are plugged into a so-called Node Card. Then 16 Node Cards are assembled in one midplane 
which is combined with another midplane and two I/O drawers to give a rack with a total of 32x32x16 = 16K cores for each rack.

 

In our BG/Q configuration there are  .10 racks for a total of 160 K cores

 

Attention

FERMI is no more available at CINECA



In addition to the compute nodes there are also front-end nodes (or login nodes) running Linux for interactive access and the submission of batch jobs. 
Parallel applications have to be cross-compiled on the front-end nodes and can only be executed on the partition defined on the compute nodes. Access to 
the compute nodes are mediated by  I/O nodes, since only them are able to interact with the file systems.

 

On the   there is a complete Red-Hat Enterprise Linux (6.2) distribution. On the   instead there is a light Linux-like kernel called login nodes compute nodes
Compute Node Kernel (CNK). Compute nodes are diskless and I/O functionalities are provided by dedicated I/O nodes.  run Linux and provide a  I/O Nodes
more complete range of OS services, e.g.: files, sockets, process launch, signaling, debugging, and termination.   perform system Service Nodes
management services (e.g., partitioning, heart beating, monitoring errors) and can be used only by system administrators.

 

The CINECA configuration is made of 10 racks as follows:

 

2 racks: 16 I/O nodes per rack,  implying a minimum job allocation of 64 nodes (1024 cores).
8 racks:  8 I/O nodes per rack,  implying a minimum job allocation of 128 nodes (2048 cores).

 

The minimum allocations result from the fact that a job must have at least one I/O node allocated to it. Therefore, even if your job asks for an arbitrary 
number of nodes or cores, a minimum partition of 64 or 128 nodes (or multiples) will be allocated and accounted!

 

 

 

Access

 

There are several login nodes (4 to 8) used for interactive access, data movement and batch submission. They have an identical environment and can be 
reached with   protocol using the "collective" hostname:SSH (Secure Shell)

 

login.fermi.cineca.it

 

wich establishes a connection to one of the available login nodes.

 

Files from other computers can be moved to FERMI using   or  :sftp scp

 

 sftp login.fermi.cineca.it
 > user:
 > passw:

 scp pippo.dat user@login.fermi.cineca.it:pippo.dat
 > passw:

 

 

 

Disk and Filesystems

 

FERMI is completely consistent with the general CINECA infrastructure (see Sect " ").Data Storage and File Systems

 

  Tot Dimension (GB) Quota (GB)

$HOME    100 TB 50 GB

https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=65833438


$CINECA_SCRATCH    900 TB no quota

$WORK  1.800 TB 1 TB (or as required by the project)

 

 

 

 

 

 

 

 

At present the $WORK space is defined only on FERMI.

 

Only the $CINECA_SCRATCH and $WORK areas should be used for running programs.

 

Since these filesystems are all based on GPFS (General Parallel File System), the usual unix command "quota" will not work. Instead use the local 
command "cindata" to query for disk usage and quota ("cindata -h" for help):

 

  > cindata

 

In addition to these filesystems, a long term archive area on tape, $TAPE, is available upon request. Finally, a new storage resource, $DRES, was added 
on the 1st October 2014. It is intended as a medium/long term repository and as a shared area within the project tema and across HPC platforms. Also this 
resource is created upon request, please, refer to the   in the General Information section. relevant page

 

Production Environment

 

The FERMI production environment is completely consistent with the CINECA infrastructure described in the " " section. It Production Environment and tools
consists of scientific applications available from the Software catalogue, a batch scheduler for submitting jobs, the "module" environment and tools for data 
management.

 

The scheduler of the FERMI system is  . The scheduler is responsible for managing jobs on the machine by allocating partitions for the LoadLeveler (LL)
user on the compute nodes, returning job output and error files to the users. LL with special emphasis on the BG/Q keywords, is discussed in the "Batch 

" Section.scheduler LoadLeveler

 

In order to make correct requests to the LL, just remember that the FERMI compute nodes are not shareable, i.e. a compute node cannot run multiple jobs 
at the same time. Moreover, compute nodes are allocated in groups called   of fixed size. You can ask for an arbitrary number of compute nodes, partitions
but the LL will allocate them for you as fixed (an maybe larger) partitions. The smallest allocation is 64 (or 128) nodes, for a total of 1024 (or 2048) cores 
depending on the job class (see below). A batch job is charged for the number of nodes allocated multiplied by the number of cores per node (16) and the 
wall clock time used.

https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=65833438
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=65833442
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4.x%3A+FERMI+Batch+Scheduler+LoadLeveler
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4.x%3A+FERMI+Batch+Scheduler+LoadLeveler


 

At present, on the FERMI machine, the following   classes are defined. Please note this schema is not final and some changes could occur. In this public
case users will be notified via the HPC-news mailing list.

 

debug: for testing jobs, short time and few ComputeNodes.
longdebug: for testing jobs and for production extra small size jobs, longer time and minimum parallelism.
smallpar: for production small size jobs, longer time and small parallelism.
parallel: for production medium size jobs, longer time and medium parallelism.
bigpar: for production large size jobs, longer time and high parallelism.
keyproject: for production extra large jobs. Normally available only for selected users and under request
serial: for jobs of post-processing, compilation and for moving data to/from CINECA_DATA/PROJECT and the cartridge system.

 

queue name ComputeNodes  max wall time defined on   notes priority

debug       64  00:30:00 2 rack with 16 I/O nodes Maxqueued(*)=1  high

longdebug 64 24:00:00 2 rack with 16 I/O nodes  Maxqueued(*)=2 low

smallpar 128 24:00:00 8 rack with 16 I/O nodes Maxqueued(*)=4 high

parallel 256 - 512 24:00:00 2 rack with 8 I/O nodes  Maxqueued(*)=2
high

bigpar 1024 - 2048
(1-2 racks)

24:00:00 6 rack with 8 I/O nodes Maxqueued(*)=2 very high

keyproject 1024 - 6*1024
(1-6 racks)

24:00:00 8 rack with 8 I/O nodes  Ask to superc@cineca.it

 Due to the geometry of the system, the max number of usable racks is 6

very high

serial 1 core 06:00:00 front-end node to be requested with @#class=serial high 

 

(*) For a user's job to be allowed into the job queue and then dispatched the total of other jobs (in the Idle, Pending, and Running states) for that user must 
be less than the   value for that user. If it is more than the   value the submitted job will still be accepted as "not-queued" (NQ) and its edmaxqueu edmaxqueu
priority will be assigned only when it passes from the NQ to the queueing state. i.e. when some of the queued jobs are completed or canceled from the 
queue. This is also valid for multi-step jobs.

 

For more information about LoadLeveler and about the syntax of the batch script, please see the specific chapter of the Guide (Batch Scheduler 
).LoadLeveler

 

Budget linearization policy

 

Starting on May the 5th, 2014,  a new policy on the use of project budgets on FERMI has been implemented.

 

For each project/account_no, a monthly quota is defined as (total_budget / total_no_of_months). Each month, starting from the first day of the month, the
collaborators of that project are allowed to use the quota at full priority; after that, their jobs will still be considered for execution, but with a lower priority.

 

This policy is similar to those already applied by other important HPC centers in Europe and worldwide. The aim is to improve the response time, giving
users opportunities related to the actual size (total amount of core-hours) of their projects.

 

Please note that, in this way, you will be forced into applying a sort of "linearization" of your project budget. Each month a given percentage of your budget
is guaranteed, but non-linear usage is discouraged. 

 

Programming Environment

 

mailto:superc@cineca.it
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4.x%3A+FERMI+Batch+Scheduler+LoadLeveler
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4.x%3A+FERMI+Batch+Scheduler+LoadLeveler


1.  
2.  
3.  
4.  

This section is relevant for those interested in writing their own codes and running them on the FERMI system. The environment is consistent with the 
general HPC programming envirnoment in CINECA as discussed in the section "Programming Environment" and is made of compilers, mathematical 
libraries, debuggers, profilers and general tools for helping users in writing and executing their own codes.

 

Is my application “suitable” to BGQ architecture?

 

The first thing is considering if your code is a good candidate for the FERMI system. Its main features are: (i) the high number of cores that impose a very 
high level of parallelisation (starting from 1024 cores)  and (ii) the small memory allocated to each MPI task (depending on applications in the range 
256MB - 16GB).

 

You should try to answer the 4 questions reported below in order to understand if this architecture is suitable for your code:

 

Does the code use the Message Passing Interface MPI? (needed to scale up to 1024 processes).
Is the memory requirement per MPI task less than 1 GB (pure MPI) or 16 GB (MPI+OpenMP)? Is it possible to exploit SMT technology?
Is the code computationally intensive? That is, is there a small amount of I/O compared to computation? Is the code floating-point intensive?
Does the algorithm allow for distributing the work to a large number of cores? How does it scale up to with thousands of threads/tasks?

 

If your answers are all "YES", well your code is a very good candidate for FERMI. If not, you should consider to modify the code, in order to best adapt it to 
the BG/Q architecture.

 

Compilers

 

On BlueGene systems you generally connect to the login node and use the compiler to build the executable for the compute nodes. Since the Login and 
the Compute nodes have different architectures, you need the so-called  , that means to instruct the compiler to compile for a different cross-compilation
platform. This is done by using specific "wrappers" of the compilers containing the correct options for cross-compilation.

 

Two main families of compilers are available:   (IBM native) and  . Both of them can compile for the Login (front-end)  nodes and the Compute (back-XL GNU
end) nodes. 

 

To cross-compile with XL or GNU load, respectively, the module: 

 

module load bgq-xl
module load bgq-gnu

 

The compilers/wrappers for cross-compilation connected with the XL compiler are:

 

bgxlf,bgxlf90:      IBM Fortran compiler
mpixlf90:            (MPI wrapper)
bgxlc,bgcc:         IBM C compiler
mpixlc:               (MPI wrapper)  
bgxlc++,bgxlC:   IBM C ++ compiler
mpixlcxx:            (MPI wrapper)  

 

(add the "_r" suffix for thread-safe compiling)

 

Key options for XL compilers include:

 

-qarch=qp: Produces object code for the BG/Q platform 
: Optimizes for the BG/Q platform-qtune=qp



 

These options are the defaults but can be added anyway to emphasise that the executables are being created for BG/Q compute nodes. Note also that it 
is not possible to compile in 32 bit mode on FERMI, i.e. the  -q32 flag is not supported.

 

Other useful options include:

 

-qnostaticlink: Create executable with dynamic linking. 
                         By default static executables are created (for performance).

 

 

 

The compilers/wrappers for cross-compilation connected with the GNU compiler are:

 

gfortran: GNU Fortran compiler
mpif77,mpif90: (MPI wrapper)
gcc: GNU C compiler
mpicc: (MPI wrapper)
g++: GNU C++ compiler
mpicxx: (MPI wrapper)

 

Since it is not possible to compile 32 bit executables the -m32 flag of the GNU compilers is not supported. Just as for the XL compilers the default linking 
mode is static. If you wish to create dynamic executables then use the -dynamic option.

 

Some useful remarks:

 

“bg” compilers are for cross-compilation
“mpi” are MPI wrappers for cross-compilation
gcc compiler for login and compute nodes has the same name. Before using it be carefull to load the correct module.
The _r-suffixed invocations allow for thread-safe compilation

use them if you want to create threaded applications
The -qsmp option must be used together with thread-safe compiler invocation modes

 

For example, to compile an MPI c program for the compute nodes:

 

 mpixlc_r  -O3 -qarch=qp -qtune=qp myprog.c -o prog

 

In case you need to compile a program (small uitlity) for the login node you have to use different compiler and the -q64 flag:

 

xlf, xlc, xlC               XL compilers for the Login node
gfortran, gcc, g++    GNU compilers for the Login node

 

 Remember to load the front-end-xl or front-end-gnu module before using the XL or GNU compilers for the login nodes.

 

Mathematical libraries

 

A number of mathematical and I/O libraries are available on FERMI. Remember to load the module, before to use them.

 



Mathematical Libraries (ESSL, BLAS, Lapack, Scalapack, blacs, PETSc, fftw, ...)
I/O Libraries (HDF5, NetCDF)

 

ESSL libraries are collections of state-of-the-art mathematical subroutines specifically designed to improve the performance of engineering and scientific 
applications on the IBM systems. To compile with them you should load the module and add the reference when linking your code:

 

> module load essl
> mpixlf ... -L$ESSL_LIB -lesslbg

 

 

 

Debugging & Profiling

 

Three main tools are available for debugging purposes:

 

addr2line (unix command, translates program addresses into file names and line numbers. Given an address and an executable, it uses the 
)debugging information in the executable to figure out which file name and line number are associated with a given address

gdb (general debugger - GNU)
 totalview (very efficient debugger for massively parallel programs)

 

You can find a detailed guide about how to use these tools on FERMI here:

 

debug guide on FERMI

 

Among the "Performance Analysis tools", the most useful are:

 

Automatically Available Performance Counters
SCALASCA
High Performance Computing Toolkit

MPI Profiler and Tracer
CPU profiler Xprofiler
Hardware Performance Monitoring
I/O Performance

 

References

 

IBM Redbook – Application Development
IBM Redbook – System Administration
IBM – Compilers:

xl c/c++ for IBM Blue Gene/Q, V12.1
xl Fortran for IBM Blue Gene/Q, V14.1

GNU - Compilers: http://gcc.gnu.org/ 

 

Outgoing links:

https://wiki.u-gov.it/confluence/download/attachments/65833491/Debug%20guide_0.pdf?version=1&modificationDate=1447077367000&api=v2
http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247869.pdf
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=%2Fcom.ibm.xlf141.bg.doc%2Finstall%2Fconfigure_options.html
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=%2Fcom.ibm.xlf141.bg.doc%2Finstall%2Fconfigure_options.html
http://gcc.gnu.org/
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