You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 36 Next »


hostname:              login.m100.cineca.it

early availability:  April 2020

start of production: to be defined (2020)



This system will be in production at the beginning of 2020 as an upgrade of the "non conventional" partition of the Marconi Tier-0 system. It is an accelerated cluster based on Power9 chips and Volta NVIDIA GPUs, acquired by Cineca within the PPI4HPC  European initiative.

System Architecture

Architecture: IBM Power 9 AC922
Internal Network: 
Mellanox Infiniband EDR DragonFly+
Storage: 8 PB (raw) GPFS of local storage

Login nodes: 8 Login IBM Power9 LC922 (similar to the compute nodes)


Model: IBM Power AC922 (Whiterspoon)

Racks: 55 total (49 compute)
Nodes: 980
Processors: 2x16 cores IBM POWER9 AC922 at 3.1 GHz
Accelerators: 4 x NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB
Cores: 32 cores/node
RAM: 256 GB/node (230 GB/node usable)
Peak Performance: about 32 Pflop/s
Internal Network: Mellanox Infiniband EDR DragonFly+
Disk Space: 8PB Gpfs storage


Access

All the login nodes have an identical environment and can be reached with SSH (Secure Shell) protocol using the "collective" hostname:

> login.m100.cineca.it

which establishes a connection to one of the available login nodes.  

For information about data transfer from other computers please follow the instructions and caveats on the dedicated section Data storage, or the document  Data Management.

Accounting

For accounting information please consult our dedicated section.

The account_no (or project) is important for batch executions. You need to indicate an account_no to be accounted for in the scheduler, using the flag "-A"

#SBATCH -A <account_no>

Please remember that different projects are usually active on different hosts. With the "saldo -b" command you can list all the account_no associated to your username. 

saldo -b (reports projects defined on M100 )


Accounting gpu resources

to be added...

Budget Linearization policy

On M100 a linearization policy for the usage of project budgets has been defined and implemented. For each account, a monthly quota is defined as:

monthTotal = (total_budget / total_no_of_months)

Starting from the first day of each month, the collaborators of any account are allowed to use the quota at full priority. As long as the budget is consumed, the jobs submitted from the account will gradually loose priority, until the monthly budget (monthTotal) is fully consumed. At that moment, their jobs will still be considered for execution, but with a lower priority than the jobs from accounts that still have some monthly quota left.

This policy is similar to those already applied by other important HPC centers in Europe and worldwide. The goal is to improve the response time, giving users the opportunity of using the cpu hours assigned to their project in relation of their actual size (total amount of core-hours).


Disks and Filesystems

The storage organization conforms to the CINECA infrastructure (see Section Data Storage and Filesystems). 

In addition to the home directory $HOME, for each user is defined a scratch area $CINECA_SCRATCH, a large disk for the storage of run time data and files. 

$WORK area is defined for each active project on the system, reserved for all the collaborators of the project. This is a safe storage area to keep run time data for the whole life of the project.



Total Dimension (TB)

Quota (GB)

Notes

$HOME20050
  • permanent/backed up, user specific, local
$CINECA_SCRATCH2.200no quota
  • temporary, user specific, local
  • no backup
  • automatic cleaning procedure of data older than 40 days (time interval can be reduced in case of critical usage ratio of the area. In this case, users will be notified via HPC-News)
$WORK5.9001.000
  • permanent, project specific, local
  • no backup
  • extensions can be considered if needed (mailto: superc@cineca.it)


$DRES environment variable points to the shared repository where Data RESources are maintained. This is a data archive area available only on-request, shared with all CINECA HPC systems and among different projects. $DRES is not mounted on the compute nodes. This means that you cannot access it within a batch job: all data needed during the batch execution has to be moved to $WORK or $CINECA_SCRATCH before the run starts.

Since all the filesystems are based on IBM Spectrum Scale™ file system (formerly GPFS), the usual unix command "quota" is not working. Use the local command cindata to query for disk usage and quota ("cindata -h" for help):

> cindata


Modules environment

As usual, the software modules are collected in different profiles and organized by functional category (compilers, libraries, tools, applications,..).

The profiles are of two types,  “domain” type (chem, phys, lifesc,..) for the production activity and “programming” type (base and advanced)  for compilation, debugging and profiling activities. They can be loaded together.

The "Base" profile is the default one. It is automatically loaded after login and it contains basic modules for the programming activities (xls, pgi and gnu compilers, math libraries, profiling and debugging tools,..).

If you want to use a module placed under others profiles, for example an application module, you will have to load the corresponding profile:

>module load profile/<profile name>
>module load autoload <module name>

For listing all profiles you have loaded use the following command:

>module list

In order to detect all profiles, categories and modules available on M100 the command “modmap” is available:

>modmap


Spack

...

Production environment

Since M100 is a general purpose system and it is used by several users at the same time, long production jobs must be submitted using a queuing system. This guarantees that the access to the resources is as fair as possible.
Roughly speaking, there are two different modes to use an HPC system: Interactive and Batch. For a general discussion see the section Production Environment and Tools.


Interactive

A serial program can be executed in the standard UNIX way:

> ./program

This is allowed only for very short runs, since the interactive environment has a 10 minutes time limit: for longer runs please use the "batch" mode.

A parallel program can be executed interactively only within an "Interactive" SLURM batch job, using the "srun" command: the job is queued and scheduled as any other job, but when executed, the standard input, output, and error streams are connected to the terminal session from which srun was launched.

For example, to start an interactive session with the MPI program myprogram, using one node, two processors, launch the command:

> srun -N1 -n2 --ntasks-per-node=2 -A <account_name> --pty /bin/bash

add gpu version?

SLURM will then schedule your job to start, and your shell will be unresponsive until free resources are allocated for you.

When the shell come back with the prompt, you can execute your program by typing:

> srun ./myprogram

or

> mpirun ./myprogram


Please note that

1) The recommended way to launch parallel tasks in slurm jobs is with srun. By using srun vs mpirun you will get full support for process tracking, accounting, task affinity, suspend/resume and other features.

2) Controlling the processes and threads affinity is crucial to ensure the optimal performances on M100. Do not rely on slurm autoaffinity and use the proper SLURM --cpu-bind option 

SLURM automatically exports the environment variables you defined in the source shell, so that if you need to run your program "myprogram" in a controlled environment (i.e. specific library paths or options), you can prepare the environment in the origin shell being sure to find it in the interactive shell.

Batch

The info reported here refer to the general user M100 partition. The production environment for EUROfusion users is discussed in a separate document.

As usual on systems using SLURM, you can submit a script script.x using the command:

> sbatch script.x

You can get a list of defined partitions with the command:

> sinfo

You can simplify the output reported by the sinfo command specifying the output format via the "-o" option. A minimal output is reported, for instance, with:

> sinfo -o "%10D %20F %P"

which shows, for each partition, the total number of nodes and the number of nodes by state in the format "Allocated/Idle/Other/Total".

IMPORTANT:

  1. Please note that the recommended way to launch parallel tasks in slurm jobs is with srun. By using srun vs mpirun you will get full support for process tracking, accounting, task affinity, suspend/resume and other features.
  2. Controlling the processes and threads affinity is crucial to ensure the optimal performances on Marconi-A2 and Marconi-A3. Do not rely on slurm autoaffinity and use the proper SLURM --cpu-bind option. 

For more information and examples of job scripts, see section Batch Scheduler SLURM.


Submitting serial Batch jobs


The m100_all_serial partition is available with a maximum walltime of 4 hours, 6 tasks and 18000 MB per job. It runs on two dedicated nodes, and it is designed for pre/post-processing serial analysis, and for moving your data (via rsync, scp etc.) in case more than 10 minutes are required to complete the data transfer. In order to use this partition you have to specify the SLURM flag "-p":


#SBATCH -p m100_all_serial


Submitting Batch jobs for production



sinfo -d lists all the partitions available on M100. Some of them are reserved to dedicated class of users (for example *_fua_ * partitions are for EUROfusion users):


  • m100_fua_prod and m100_fua_dbg, are  reserved to EuroFusion users, respectivelly for production and debugging
  • m100_usr_prod and m100_usr_dbg are opened to academic production.


Each node exposes itself to SLURM as having 32 cores, 4 GPUs and 230 GB of memory. SLURM assigns a node in shared way, assigning to the job only the resources required and allowing multiple jobs running on the same node/nodes. If you want to have the node/s in exclusive mode, ask for all the resources of the node (either ncpus=32 or ngpus=4 or mem=230000).


The maximum memory which can be requested is 230000MB and this value guarantees that no memory swapping will occur.


medium memory available per core ~7.1 GB


For example, to request a single core node in a production queue the following SLURM job script can be used:

#!/bin/bash
#SBATCH -N 1
#SBATCH -A <account_name>
#SBATCH --mem=230000 <-- sostituire con memoria corrispondedte a 1 core
#SBATCH -p m100_usr_prod
#SBATCH --time 00:05:00
#SBATCH --job-name=my_batch_job
#SBATCH --mail-type=ALL
#SBATCH --mail-user=<user_email>


srun ./myexecutable


Users with exhausted but still active projects are allowed to keep using the cluster resources, even if at a very low priority, by adding the  "qos_lowprio" flag to their job:

#SBATCH --qos=qos_lowprio


Summary


In the following table you can find all the main features and limits imposed on the queues/Partitions of M100. 



SLURM

partition

QOS# cores per job
max walltime

max running jobs per user/

max n. of cpus/nodes per user

max memory per node

(MB)

prioritynotes

m100_all_serial

(default partition)

m100_all_serial

max = 6

(max mem= 18000 MB)

04:00:00

6 cpus


 700040

 qos_rcm

min = 1

max = 32

03:00:001/32

182000


- 

to be defined









m100_usr_dbgm100_qos_dbg

max = 2 nodes

02:00:0024 nodes18200045runs on 24 dedicated nodes
m100_usr_prodm100_usr_prod

min = 1 node

max = 16 nodes

1-00:00:0016 nodes18200040

m100_qos_bprod

min = 17 nodes

max = 256 nodes

1-00:00:00

1/256

1 jobs per account

18200050

#SBATCH -p skl_usr_prod

#SBATCH --qos=skl_qos_bprod


qos_special>256 nodes

>24:00:00

(max = 64 nodes for user)


                          182000        40

#SBATCH --qos=qos_special

request to superc@cineca.it

qos_lowpriomax = 64 nodes24:00:0064 nodes1820000#SBATCH --qos=qos_lowprio
m100_usr_preempt
max = 16 nodes08:00:00

10
m100_fua_prodm100_fua_prodmax = 16 nodes1-00:00:00

60

m100_qos_fuadbgmax = 2 nodes02:00:00

65




Graphic session


If a graphic session is desired we recommend to use the tool RCM (Remote Connection Manager)For additional information visit Remote Visualization section on our User Guide.

Programming environment

The programming environment of the M100 cluster consists of a choice of compilers for the main scientific languages (Fortran, C and C++), debuggers to help users in finding bugs and errors in the codes, profilers to help in code optimisation.

In general you must "load" the correct environment also for using programming tools like compilers, since "native" compilers are not available.

If you use a given set of compilers and libraries to create your executable, very probably you have to define the same "environment" when you want to run it. This is because, since by default linking is dynamic on Linux systems, at runtime the application will need the compiler shared libraries as well as other proprietary libraries. This means that you have to specify "module load" for compilers and libraries, both at compile time and at run time. To minimize the number of needed modules at runtime, use static linking to compile the applications.


Compilers

You can check the complete list of available compilers on MARCONI with the command:

> module available

and checking the "compilers" section. The available compilers are:

  • XL
  • PGI
  • GNU
  • CUDA



XL 

The XL compiler family offers C, C++, and Fortran compilers designed for optimization and improvement of code generation, exploiting the inherent opportunities in Power Architecture.

...


PORTLAND Group (PGI)


Initialize the environment with the module command:

> module load pgi


The name of the PGI compilers are:


  • pgf77: Fortran77 compiler
  • pgf90: Fortran90 compiler
  • pgf95: Fortran95 compiler
  • pghpf: High Performance Fortran compiler
  • pgcc: C compiler
  • pgCC: C++ compiler


The documentation can be obtained with the man command after loading the relevant module:


> man pgf95
> man pgcc


Some miscellanous flags are described in the following:


-Mextend            To extend over the 77 column F77's limit
-Mfree / -Mfixed    Free/Fixed form for Fortran
-fast               Chooses generally optimal flags for the target platform
-fastsse            Chooses generally optimal flags for a processor that supports SSE instructions


GNU compilers

The gnu compilers are always available but they are not the best optimizing compilers, it ensures the maximum portability. You do not need to load the module for using them.

Initialize the environment with the module command:

> module load gnu

The name of the GNU compilers are:

  • g77: Fortran77 compiler
  • gfortran: Fortran95 compiler
  • gcc: C compiler
  • g++: C++ compiler

The documentation can be obtained with the man command:

> man gfortan
> man gcc

Some miscellanous flags are described in the following:

-ffixed-line-length-132       To extend over the 77 column F77's limit
-ffree-form / -ffixed-form    Free/Fixed form for Fortran


CUDA

Compute Unified Device Architecture is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs. 

In GPU-accelerated applications, the sequential part of the workload runs on the CPU – which is optimized for single-threaded performance – while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA, developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in the form of a few basic keywords. We refer to the the NVIDIA CUDA Parallel Computing Platform documentation.

...

Debugger and Profilers

If at runtime your code dies, then there is a problem. In order to solve it, you can decide to analyze the core file (core not available with PGI compilers) or to run your code using the debugger.


Compiler flags

Whatever your decision, in any case you need to enable compiler runtime checks, by putting specific flags during the compilation phase. In the following we describe those flags for the different Fortran compilers: if you are using the C or C++ compiler, please check before because the flags may differ.

The following flags are generally available for all compilers and are mandatory for an easier debugging session:

-O0     Lower level of optimization
-g      Produce debugging information

Other flags are compiler specific and are described in the following:

XL Fortran compiler

to be added...

PORTLAND Group (PGI) Compilers

The following flags are useful (in addition to "-O0 -g") for debugging your code:

-C                     Add array bounds checking
-Ktrap=ovf,divz,inv    Controls the behavior of the processor when exceptions occur: 
                       FP overflow, divide by zero, invalid operands
GNU Fortran compilers

The following flags are useful (in addition to "-O0 -g")for debugging your code:

-Wall             Enables warnings pertaining to usage that should be avoided
-fbounds-check    Checks for array subscripts.


Debuggers available

Totalview 

The TotalView debugger is a programmable tool that lets you debug, analyze, and tune the performance of complex serial, multiprocessor, and multithreaded programs.
TotalView has many features and it gives you a great number of tools for finding your program's problems.

Details on how to use totalview are in 

https://docs.roguewave.com/en/totalview/current/html/

Scalasca

Scalasca is a tool for profiling parallel scientific and engineering applications that make use of MPI and OpenMP.

Details how to use scalasca in
http://www.scalasca.org/software/scalasca-2.x/documentation.html

PGI: pgdbg (serial/parallel debugger)

pgdbg is the Portland Group Inc. symbolic source-level debugger for F77, F90, C, C++ and assembly language programs. It is capable of debugging applications that exhibit various levels of parallelism.

GNU: gdb (serial debugger)

GDB is the GNU Project debugger and allows you to see what is going on 'inside' your program while it executes -- or what the program was doing at the moment it crashed.

VALGRIND

Valgrind is a framework for building dynamic analysis tools. There are Valgrind tools that can automatically detect many memory management and threading bugs, and profile your programs in detail. The Valgrind distribution currently includes six production-quality tools: a memory error detector, two thread error detectors, a cache and branch-prediction profiler, a call-graph generating cache profiler, and a heap profiler.

Valgrind is Open Source / Free Software, and is freely available under the GNU General Public License, version 2.

Profilers (gprof)

In software engineering, profiling is the investigation of a program's behavior using information gathered as the program executes. The usual purpose of this analisys is to determine which sections of a program to optimize - to increase its overall speed, decrease its memory requirement or sometimes both.

A (code) profiler is a performance analisys tool that, most commonly, measures only the frequency and duration of function calls, but there are other specific types of profilers (e.g. memory profilers) in addition to more comprehensive profilers, capable of gathering extensive performance data.

gprof

The GNU profiler gprof is a useful tool for measuring the performance of a program. It records the number of calls to each function and the amount of time spent there, on a per-function basis. Functions which consume a large fraction of the run-time can be identified easily from the output of gprof. Efforts to speed up a program should concentrate first on those functions which dominate the total run-time.

gprof uses data collected by the -pg compiler flag to construct a text display of the functions within your application (call tree and CPU time spent in every subroutine). It also provides quick access to the profiled data, which let you identify the functions that are the most CPU-intensive. The text display also lets you manipulate the display in order to focus on the application's critical areas.

Usage:

>  gfortran -pg -O3 -o myexec myprog.f90
> ./myexec
> ls -ltr
   .......
   -rw-r--r-- 1 aer0 cineca-staff    506 Apr  6 15:33 gmon.out
> gprof myexec gmon.out

It is also possible to profile at code line-level (see "man gprof" for other options). In this case you must use also the “-g” flag at compilation time:

>  gfortran -pg -g -O3 -o myexec myprog.f90
> ./myexec
> ls -ltr
   .......
   -rw-r--r-- 1 aer0 cineca-staff    506 Apr  6 15:33 gmon.out
> gprof -annotated-source myexec gmon.out


It is possilbe to profile MPI programs. In this case the environment variable GMON_OUT_PREFIX must be defined in order to allow to each task to write a different statistical file. Setting

export GMON_OUT_PREFIX=<name>

 once the run is finished each task will create a file with its process ID (PID) extension

<name>.$PID

 If the environmental variable is not set every task will write the same gmon.out file.


Scientific libraries

Engineering and Scientific Subroutine Library (ESSL)

Scientific libraries designed for Power architecture included in the XL compiler package, 

> module load xl

Documentation: https://www.ibm.com/support/knowledgecenter/SSFHY8/essl_content.html


  • No labels