Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Debuggers and Profilers

If your code aborts at runtime, there may be a problem with it. In order to solve it, you can decide to analyze the core file (feature not available if the code is compiled with PGI) or to run your code using a debugger.


Compiler flags

In both cases, you need to enable compiler runtime checks, by putting specific flags during the compilation phase. In the following we describe those flags for the different Fortran compilers: if you are using the C or C++ compiler, please keep in mind that the flags may differ.

The following flags are generally available for all compilers and are mandatory for an easier debugging session:

-O0     Lower level of optimisation
-g      Produce debugging information

Other flags are compiler-specific and are described in the following.

INTEL Fortran compiler

The following flags are useful (in addition to "-O0 -g") for debugging your code:

-traceback        generate extra information to provide source file traceback at run time
-fp-stack-check   generate extra code to ensure that the floating-point stack is in the expected state
-check bounds     enables checking for array subscript expressions
-fpe0             allows some control over floating-point exception handling at run-time

GNU Fortran compilers

The following flags are useful (in addition to "-O0 -g") for debugging your code:

-Wall             Enables warnings pertaining to usage that should be avoided
-fbounds-check    Checks for array subscripts.



In the following we report information about some ways to debug your codes:

GNU: gdb (serial debugger)

GDB is the GNU Project debugger and allows you to see what is going on 'inside' your program while it executes -- or what the program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs in the act:

  • Start your program, specifying anything that might affect its behavior.
  • Make your program stop on specified conditions.
  • Examine what has happened, when your program has stopped.
  • Change things in your program, so you can experiment with correcting the effects of one bug and go on to learn about another.

More details in the online documentation, using the "man gdb" command.

To use this debugger, you should compile your code with one of the gnu compilers and the debugging command-line options described above, then you run your executable inside the "gdb" environment:

> module load gnu
> gfortran -O0 -g -Wall -fbounds-check -o myexec myprog.f90
> gdb ./myexec


Core file analysis

In order to understand what problem was affecting your code, you can also try a "Core file" analysis. Since core files are usually quite large, be sure to work in the /scratch area.

There are several steps to follow:

  1. Increase the limit for possible core dumping
> ulimit -c unlimited (bash)
> limit coredumpsize unlimited (csh/tcsh)
  1. If you are using Intel compilers, set to TRUE the decfort_dump_flag environment variable
> export decfort_dump_flag=TRUE  (bash)       
> setenv decfort_dump_flag TRUE  (csh/tcsh)
  1. Compile your code with the debug flags described above.
  2. Run your code and create the core file.
  3. Analyze the core file using different tools depending on the original compiler.

INTEL compilers

> module load intel
> ifort -O0 -g -traceback -fp-stack-check -check bounds -fpe0 -o myexec prog.f90
> ulimit -c unlimited
> export decfort_dump_flag=TRUE
> ./myexec
> ls -lrt
  -rwxr-xr-x 1 aer0 cineca-staff   9652 Apr  6 14:34 myexec
  -rw------- 1 aer0 cineca-staff 319488 Apr  6 14:35 core.25629
> idbc ./myexec core.25629

GNU Compilers

> module load gnu
> gfortran -O0 -g -Wall -fbounds-check -o myexec prog.f90 > ulimit -c unlimited > ./myexec > ls -lrt -rwxr-xr-x 1 aer0 cineca-staff 9652 Apr 6 14:34 myexec -rw------- 1 aer0 cineca-staff 319488 Apr 6 14:35 core.25555 > gdb ./myexec core.2555


VALGRIND

Valgrind is a framework for building dynamic analysis tools. There are Valgrind tools that can automatically detect many memory management and threading bugs, and profile your programs in detail. The Valgrind distribution currently includes six production-quality tools: a memory error detector, two thread error detectors, a cache and branch-prediction profiler, a call-graph generating cache profiler, and a heap profiler.

Valgrind is Open Source / Free Software, and is freely available under the GNU General Public License, version 2.

To analyse a serial application:

  1. Load Valgrind module --> module load valgrind
  2. Load module for the compiler and compile your code with the compiler you prefer (Use -O0 -g flags)
  3. Run the executable under Valgrind.  

    If you normally run your program like this:

      myprog arg1 arg2
    

    Use this command line:

      valgrind  (valgrind-options) myprog arg1 arg2 

    Memcheck is the default tool. You can add the --leak-ceck option that turns on the detailed memory leak detector. Your program will run much slower  than normal, and use a lot more memory. Memcheck will issue messages about memory errors and leaks that it detects.

To analyse a parallel application:
  1. Load Valgrind module --> module load valgrind
  2. Load modules for compiler and openmpi libraries (at present only available for intel and gnu)
  3. Compile your code with the "-O0 -g" flags both at compiling and linking time
  4. Run the executable under Valgrind (both in interactive than in batch mode)
  mpirun -np 4 valgrind (valgrind-options) myprog arg1 arg2

Totalview - will be soon available
Totalview is a parallel debugger with a practical GUI that assist users to debug their parallel code. It has functionalities like stopping and reprising a code mid-run, setting breakpoints, checking the value of variables anytime, browse between the different tasks and threads to see the different behaviours, memory check functions and so on. For information about how to run the debugger (by connecting the compute nodes to your display via RCM), type the command:

> module help totalview

Scalasca
Scalasca is a tool for profiling parallel scientific and engineering applications that make use of MPI and OpenMP.
Details how to use scalasca in
http://www.scalasca.org/software/scalasca-2.x/documentation.html

Profilers (gprof) - will be updated

In software engineering, profiling is the investigation of a program's behaviour using information gathered as the program executes. The usual purpose of this analysis is to determine which sections of a program to optimize - to increase its overall speed, decrease its memory requirement or sometimes both.

A (code) profiler is a performance analysis tool that, most commonly, measures only the frequency and duration of function calls, but there are other specific types of profilers (e.g. memory profilers) in addition to more comprehensive profilers, capable of gathering extensive performance data.


Scientific libraries (MKL)

MKL

The Intel Math Kernel Library (Intel MKL) enables improving performance of scientific, engineering, and financial software that solves large computational problems. Intel MKL provides a set of linear algebra routines, fast Fourier transforms, as well as vectorized math and random number generation functions, all optimized for the latest Intel processors, including processors with multiple cores.

Intel MKL is thread-safe and extensively threaded using the OpenMP technology.

documentation can be found by loading the mkl module and searching in the directory:

${MKLROOT}/../Documentation/en_US/mkl

To use the MKL in your code you to load the module, then to define includes and libraries at compile and linking time:

> module load mkl
> icc -I$MKL_INC -L$MKL_LIB  -lmkl_intel_lp64 -lmkl_core -lmkl_sequential

For more informations please refer to the documentation.

...