Fear of Attachments

Seve Loughran
2003-02-03

1.1 Introduction: SOAP and its attachments

One issue which has shown up with SOAP from the outset is "how do you send binary data’ in a
SOAP message. There are plenty of reasons for this. Y ou may want to send binary data. Y ou may
want to send lots of binary data. Or you may want to send XML in a different encoding or
schema/DTD from the SOAP message, and don’'t want to get into all the problems of nested
XML.

The simplest solution as (and is) Base-64 encoded data. Encode the data, string it in a string
and send it over the wire inside the SOAP message. This works across all possible transports, is
known to interoperate well across al implementations, and is pretty much guaranteed to work
with small amounts data. Also, it's very easy to code, provided the underlying library does the
encoding and decoding for you.

Y et base-64 has its limits. Its inefficient, using only 6 bits of each byte, it adds about a third
to the length of a message, plus perhaps a bit of padding to set the length. Note that there is a
proposed base-85 encoding which uses less space, but is not integrated with any SOAP libraries.
When sending large files, the issue becomes not just the expansion of the payload, but the actual
process for encoding it and sending it over the wire. A 2KB file is easy to encode and ship; a
3MB file consumes memory while it is encoded and takes 4MB worth of uplink channel. It then
causes no end of havoc at the far end, depending upon the XML parser. XML parsers are not
usually engineered to have strings that large inside them. A 200MB file, or a 1GB file doesn’'t
bear thinking about.

Clearly it is better to send large binary files in different ways. One getout clause is to use an
intermediary, a file store or a web server, and send a URL to the content. This has some
advantages. Y ou can upload the files using an efficient protocol such as FTP, maybe even serve
them directly from your file system, and the recipient can fetch the file at its leisure. If the server
gueues requests for processing, not having to retrieve the binary files until processing begins can
be beneficial, and if the server implements caching, repeated requests using the same files can
avoid repeated retransmissions of the data.

Before rushing to implement such a system, consider the drawbacks. Y ou need to decide how
long to hold content that is being served, and address firewall and security issues. To clean up
files you effectively need a state machine, not deleting files till you know the message is
processed, or have a housekeeping system to delete files after a certain time. Firewalls can only
be addressed by using servers visible to al involved parties. Finally, the server side processing
can be complex: you need to add retrieval and potentially caching to the server. That issimply too
much work unless you need to add something fancy such as chunked file upload over multiple
requests.

Copyright © Steve Loughran 2003 DRAFT 1

1.2 Therelevant standards

1.2.1 SOAP
1.2.2 SvA:; SOAP with Attachments

This is the first attachment proposal, a joint effort of Microsoft and John Barton of HP Labs. It
extends the existing MIME standard to cover sending a SOAP message as the first attachment in
a set of attachments sent to a Web Service endpoint.

1.2.3 DIME

This is the Microsoft format. They think it is better than SwA, and to make sure you use it, it is
the only format that .NET framework can currently support —even then .NET1.0 does not support
it out the box.

1.2.4 JAX-RPC and SAAJ
1.2.5 WS| Basic Sandard

This specification says 'use DIME'. No discussion, not explanation of the arguments, just 'use
DIME', pure and simple. This means that basic JAX-RPC implementations are automatically
outside the standard.

1.3 Apache Axis

AXxis supports both Soap with Attachment (SwA) and DIME messages. When sending a message
you need to decide which transport to use; to receive it you need do nothing. An Axis endpoint
can handle both SwA and DIME endpoints.

1.3.1 Requirements

To send and receive attachments in Axis, you need two files, activation.jar and
mai | . j ar, aong with the core Axis libraries. These jars give Java MIME support, and are built
in to J2EE, but not any of the current Java client runtimes. If these files are missing, Axis works,
but attachments do not.

1.3.2 Client

Here is afragment of aclass to send aMime or DIME request to a server.

public void submtJob(String nane, File file, bool ean dine)
t hrows Renot eException {
if ('isBound()) {
t hrow new Axi sFaul t ("Not connected");

}

Z0o0Bi ndi ngStub server = null;
try {

server = (ZooBi ndi ngStub) | ocator. getzooPort (_endpoi nt URL) ;
} catch (ServiceException e) {

t hrow Axi sFaul t. makeFaul t (e);

Copyright © Steve Loughran 2003 DRAFT 2

}

[/turn dime on
if (dinme) {
server._setProperty(Call. ATTACHVENT ENCAPSULATI ON_FORNAT,
Cal | . ATTACHVENT_ENCAPSULATI ON_FORVAT_DI MVE) ;

}

//add our attachnents
Dat aHandl er buildFile =

new Dat aHandl er (new Fi | eDat aSource(file));
server. addAtt achnent (bui l dFi |l e);

StringArray filenames = new StringArray();
filenanes.setElt(new String[]{file.getNane()});
server.subm t Si npl eJob(nanme, filenanes);

Notice how the client is not only sending the file; it is adding the name of the file to a string
array parameter in the request. This is because the server wants to know the extension, and there
is no other way to do it. In Mime mode, we could add a Mime header, but not when the dime
switch is set

What we are not showing here is how long it takes to upload large files. What may take afew
seconds on a 100 MBIt LAN against an unloaded development system will take much longer over
a sower, busier network against a busy production machine. The tcpmon monitoring application
in Axisl.1 can simulate delays to demonstrate the problems that ow links have. To address the
delays, you need to be doing the upload outside of the main GUI thread, in a Swing app, as
otherwise the app will lock up for an extended period.

1.3.3 Server

Server side is complex, depending on how you want to get at the attachments. The simplest
approach is to not add attachments to the method signature, and just pull it out by hand. This
means that any auto-generated WSDL lacks any information about the attachments: you need to
document this in the text that accompanies the WSDL. Moreover, you need to test for those
attachments later.

Manual attachment extraction

To extract the messages manually, you just get the attachment parts from the current request, then
make sure that everything is valid, which means the number of attachmentsisin the valid range.

public void subm tSinpl eJob(String jobNane,
StringArray filenames) throws RenoteException {

| og. i nfo("SQAP: : submt Si npl eJob " j obNane);
Attachment Part[] attachnments = get MessageAttachnents();
if (log.isDebugEnabled()) {

| og. debug("recei ved nessage with "

+ attachnments.length + " attachnments");

}
if (attachments.length == 0) {

t hrow new Axi sFault("No job submtted with request");

}

Copyright © Steve Loughran 2003 DRAFT 3

if (attachments.length > 1) {

t hrow new Axi sFault("too nmany attachnments! "+

"One only please");

}
/1 validate everything
if (filenanes.getElt().length = attachnments.|ength) {

t hrow new Axi sFaul t ("Every attachment needs a matching "

+"filenanme entry, and vice versa");

//now work with the attachnments.. ..

The secret to making this work is that the helper method, get MessageAt t achnment s(), that
extracts an array of attachment entries from the current message.

/**

* extract attachnments fromthe current request

* @eturn a list of attachmentparts or

* an enpty array for no attachnments support in this axis
* buid/runtine

private AttachnmentPart[] get MessageAttachnents() throws Axi sFault {

}

MessageCont ext nsgCont ext = MessageCont ext . get Current Cont ext () ;
Message reqgMsg = nmsgCont ext . get Request Message() ;
Attachments nessageAttachnments = regMsg. get Attachment sl npl () ;
if (null == nessageAttachnents) {
| og. debug("no attachnent support”);
return new Attachment Part[0];
}
i nt attachnent Count = nmessageAttachnents. get Att achnent Count () ;
Attachment Part attachnents[] =
new Attachnent Part[attachment Count];
Iterator it = messageAttachnments.getAttachnents().iterator();
int count = O;
while (it.hasNext()) {
Attachment Part part = (AttachnentPart) it.next();
attachnent s[count ++] = part;

}

return attachnents;

Many people get confused by the fact that MessageCont ext . get Cur r ent Cont ext () isa
static method, and hence Axis cannot support more than one message at atime. To these people |
say firstly, look up Thr eadLocal in the JDK documentation, and secondly, if ever you have
guestions about Axis, look at the source.

This helper method always returns an empty array if there is no attachment support. We could
throw an exception, or log the state at a higher level of importance. The latter makes sense if the
system should always have attachments installed, and missing support means that something has
gone wrong with the installation. One would expect the post-installation unit tests to try and
submit jobs and so fail anyway, but it is always better for operations to have a clear message 'Y ou

Copyright © Steve Loughran 2003 DRAFT 4

need to add the attachment jars rather than ‘testCanSubmitJob is failing saying we didn’t send
any job with the request’. One they can deal with, the other they page the dev team for. Unless
you like being woken up, write error messages that make sense to operations.

Getting at the contents
Y ou can get at the attachment by asking for the input stream:

attachnent . get I nput St ream()

Simple, eh?
File Management

Attachments are saved to memory if they are small (under 16KB or so), and then to disk if they
get larger. Axisl.1 automatically cleans up these files when the attachments are finalized, but not
before. Forcing a gc on the server sporadically helps keep disk usage down and stops leakage
when the server crashes.

Axis 1.0 did no cleanup whatsoever, and there was no way of getting at the files to delete by
hand, other than having a housecleaner thread purge the attachment directory of old files

Another nice feature of Axisl.1 isthat you can ask for the filename (if it exists), and tell the
At t achment Part not to delete the file when it isfinalized, by detaching it.

/1 may be null

String savedFile = attachnentPart.get AttachnentFile();
attachnment Part . detachAttachment Fil e();

at tachnment Par t =nul |

Once you have moved afile by hand, the At t achrent Par t should not be used again, because
it isin an incomplete state. Y ou cannot ask it for its contents as the file containing those contents
has been moved.

Accessing the file contents is therefore an advanced use, but one useful when you start
receiving big files: renaming afileis alot faster than copying a 30MB file, even across the same
local hard disk.

Copyright © Steve Loughran 2003 DRAFT 5

