
Optimization Guide

Intel® Deep Learning Boost

Intel® Xeon® Scalable Processor

Deep Learning with Intel® AVX512 and Intel®
Deep Learning Boost Tuning Guide on 3rd
Generation Intel® Xeon® Scalable Processors

Revision Record ... 3

1. Overview .. 4

2. Introducing Intel® AVX-512 and Intel® Deep Learning Boost 5

3. BIOS Settings and Hardware Configurations ... 6

3.1. BIOS Settings ... 6

3.2. Recommended Hardware Configurations ... 6

4. Linux System Optimization .. 6

4.1. OpenMP Parameter Settings ... 6

4.2. Number of CPU cores ... 6

4.3. Impact of NUMA Configuration .. 7

4.4. Configuration of Linux Performance Governor ... 7

4.5. CPU C-States Settings .. 7

5. Using Intel® Optimization for TensorFlow* Deep Learning Framework 7

5.1. Deploying Intel® Optimization for TensorFlow* Deep Learning Framework . 7

5.2. Inferencing using Intel® Optimization for TensorFlow* DL Model with

FP32/INT8 support .. 8

5.3. Training using Intel® Optimization for TensorFlow* DL Model with FP32/

INT8 Support .. 8

5.4. Applications – Inferencing and Training Using Intel Optimized TensorFlow

Wide & Deep Model ... 9

5.5. Intel® Math Kernel Library (MKL) Threadpool-Based TensorFlow (Optional)

... 10

6. Using PyTorch*, a Deep Learning Framework .. 10

6.1. Deploying PyTorch .. 10

6.2. Optimization Recommendations for Training and Inferencing PyTorch-

based Deep Learning Models .. 11

6.3. Introducing and Using Intel® Extension for PyTorch .. 11

7. Accelerating Vector Recall in the Recommendation System with Intel®

Deep Learning Boost VNNI .. 11

8. AI Neural Network Model Quantization ... 12

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 2 | Total 24

8.1. AI neural network quantization process .. 12

8.2. Intel® AI Quantization Tools for TensorFlow ... 14

8.3. Installing Intel® AI Quantization Tools for TensorFlow ... 16

8.4. Using Intel® AI Quantization Tools for TensorFlow .. 17

8.4.1. Dataset preparation: ... 17

8.4.2. Model preparation: .. 17

8.4.3. Run Tuning: ... 17

8.4.4. Run Benchmark: .. 17

9. Using Intel® Distribution of OpenVINO™ Toolkit for Inference Acceleration

 ... 18

9.1. Intel® Distribution of OpenVINO™ Toolkit ... 18

9.2. Deploying the Intel® Distribution of OpenVINO™ Toolkit 19

9.3. Using Deep Learning Deployment Toolkit (DLDT) of the Intel® Distribution

of OpenVINO Toolkit ... 19

9.4. Using the Intel® Distribution of OpenVINO™ Toolkit for INT8 Inference

Acceleration .. 19

10. Using Intel® DAAL for Accelerated Machine Learning 21

10.1. Intel® Distribution for Python* ... 21

10.2. Intel® DAAL ... 22

10.3. Installing Intel® Distribution for Python & Intel® DAAL 23

10.4. Using Intel® DAAL .. 23

11. References .. 24

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 3 | Total 24

Revision Record

Date Rev. Description

04/06/2021 1.0 Initial public release.

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 4 | Total 24

This user guide is intended to explain how the 3rd Gen Intel® Xeon® Scalable Processor platform ((codename Ice

Lake/Whitley) is used for machine learning and deep learning-related tasks. Executing machine learning and deep

learning workloads on the Intel® Xeon® Scalable Processor platform has the following advantages:

• The platform is very suitable for processing memory-intensive workloads and 3D-CNN topologies used in

medical imaging, GAN, seismic analysis, genome sequencing, etc.

• The simple numactl command can be used for flexible core control; it is still very suitable for real-time

inference even when the number of batches is small.

• It is supported by a powerful ecosystem and can be used for distributed training (such as for computations

directly at the data source) directly on large-scale clusters. This avoids the additional costs for large storage

capacity and expensive cache mechanisms that are usually required for the training of scaled architecture.

• Multiple types of workloads (HPC/BigData/AI) are supported on the same cluster to achieve better TCO.

• It satisfies the computing requirements in many real deep learning applications via SIMD acceleration.

• The same infrastructure can be used directly for training and inference.

The development and deployment of typical deep learning applications involve the following stages:

These different stages require the allocation of following resources, and choosing the right resources can greatly

accelerate the efficiency of your AI services:

• Computational power

• Memory

• Storage for datasets

• Communication link between compute nodes

• Optimized software

All the processes including dataset preparation, model training, model optimization, and model deployment, can be

done on an Intel® Xeon® Scalable Processor platform-based infrastructure which also supports machine learning/deep

learning platforms for training and inference. The proposed infrastructure is shown in the figure below:

Dataset

preparation

Model training

and tuning

Model

optimization

and

migrated

learning

Model

deployment

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 5 | Total 24

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) is a “single instruction, multiple data” (SIMD) instruction set

based on x86 processors. Compared to traditional “single instruction, single data” instructions, a SIMD instruction

allows for executing multiple data operations with a single instruction. As the name implies, Intel® AVX-512 has a

register width of 512 bytes, and it supports 16 32-byte single-precision floating-point numbers or 64 8-byte integers.

Intel® Xeon® Scalable Processors support multiple types of workloads, including complex AI workloads, and improve AI

computation performance with the use of Intel® Deep Learning Boost (Intel® DL Boost). Intel Deep Learning Boost

includes Intel® AVX-512 VNNI (Vector Neural Network Instructions) which is an extension to the Intel® AVX-512

instruction set. It can combine three instructions into one for execution, which further unleashes the computing

potential of next-generation Intel® Xeon® Scalable Processors and increases the inference performance of the INT8

model. Both 2nd-Generation and 3rd-Generation Intel® Xeon® Scalable Processors support VNNI.

Platforms not using VNNI require the vpmaddubsw, vpmaddwd and vpaddd instructions to complete the multiply-

accumulate operations in INT8 convolution operation:

Platforms using VNNI require only one instruction, “vpdpbusd”, to complete the INT8 convolution operation:

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 6 | Total 24

The configuration items that can be optimized in BIOS and their recommended values are as follows:

Configuration item Recommended value

Hyper-Threading Enable

SNC (Sub NUMA) Disable

Boot performance mode Max Performance

Turbo Mode Enable

Hardware P-State Native Mode

Machine learning workloads, and in particular deep learning workloads, are usually used for compute-intensive

applications. Hence, they require a selection of suitable types of memory, CPU, hard drives, and other computing

resources to achieve optimal performance. In summary, the following common configurations are recommended:

Memory configuration

The utilization of all memory channels is recommended so that the bandwidth of all memory channels can be utilized.

CPU configuration

FMA, the Intel AVX-512 acceleration module in Intel processors, is an important component in unleashing

computational performance, and artificial intelligence-related workloads are usually part of compute-intensive

applications. In order to achieve better computing performance, it is recommended to use the Intel Xeon® Scalable

Processors Gold 6 series (or above) which have two Intel AVX512 computational modules per core.

Network configuration

If cross-node training clusters are required, then it is recommended to choose high-speed networking such as

25G/100G networks for better scalability.

Hard drive configuration

For high IO efficiency for workloads, SSDs and drives with higher read and write speeds are recommended.

The recommended configuration for the main parameters is as follows:

• OMP_NUM_THREADS = “number of cpu cores in container”
• KMP_BLOCKTIME = 1 or 0 (set according to actual type of model)
• KMP_AFFINITY=granularity=fine, verbose, compact,1,0

The main impact of the number of CPU cores on inference performance is as follows:

• When batchsize is small (in online services for instance), the increase in inference throughput gradually weakens as

the number of CPU cores increases; in practice, 8-16 CPU cores is recommended for service deployment depending on

the model used.

• When batchsize is large (in offline services for instance), the inference throughput can increase linearly as the number

of CPU cores increases; in practice, more than 20 CPU cores is recommended for service deployment.

taskset -C xxx-xxx –p pid (limits the number of CPU cores used in service)

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 7 | Total 24

For NUMA-based servers, there is usually a 5-10% increase in performance when configuring NUMA on the same node

compared to using it on different nodes.

#numactl -N NUMA_NODE -l command args ... (controls NUMA nodes running in service)

Performance: As the name suggests, efficiency is the only consideration and the CPU frequency is set to its peak to

achieve the best performance.

cpupower frequency-set -g performance

CPU C-States: To reduce power consumption when the CPU is idle, the CPU can be placed in the low-power mode.

There are several power modes available for each CPU which are collectively referred to as C-states or C-modes.

Disabling C-States can increase performance.

#cpupower idle-set -d 2,3

TensorFlow* is one of the most popular deep learning frameworks used in large-scale machine learning (ML) and deep

learning (DL) applications. Since 2016, Intel and Google* engineers have been working together to use Intel® oneAPI

Deep Neural Network Library (Intel® oneDNN) to optimize TensorFlow* performance and accelerate its training and

inference performance on the Intel® Xeon® Scalable Processor platform.

Reference: https://www.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-

guide.html

Step 1: Install a Python3.x environment. Here is an example to illustrate how to build Python* 3.6 with Anaconda*

Reference: https://www.anaconda.com/products/individual

Download and install the latest version of Anaconda

wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
sh Anaconda3-2020.02-Linux-x86_64.sh
source /root/.bashrc
conda install python=3.6 (create a Python3.6 environment)
#(base) [root@xx]# python -V
Python 3.6.10

Step 2: Install the Intel optimation for TensorFlow*: intel-tensorflow.

Install the latest version (2.x)

pip install intel-tensorflow

If you need to install tensorflow1.x, we recommend installing the following version to take advantage of the

performance acceleration on the 3rd Gen Intel® Xeon® Scalable Processor platform:

pip install https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-
1.15.0up2-cp36-cp36m-manylinux2010_x86_64.whl

Step 3: Set run-time optimization parameters.

Reference:

https://github.com/IntelAI/models/blob/master/docs/general/tensorflow/GeneralBestPractices.md

Usually, the following two methods are used for inference, which use different optimization settings

https://www.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://www.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://www.anaconda.com/products/individual
https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp36-cp36m-manylinux2010_x86_64.whl
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp36-cp36m-manylinux2010_x86_64.whl
https://github.com/IntelAI/models/blob/master/docs/general/tensorflow/GeneralBestPractices.md

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 8 | Total 24

Batch inference: Batch Size >1, measures the number of input tensors that can be processed per second. Usually, all

the physical cores in the same CPU socket can be used for batch inference to achieve the best performance.

On-line inference (also known as real-time inference): Batch Size=1, a measure of time needed to process one input

tensor (when the batch size is 1). In real-time inference, multiple instances are run concurrently to achieve the optimal

throughput.

1: Obtaining the number of physical cores in the system:

To confirm the current number of physical cores, we recommend using the following command:

lscpu | grep "Core(s) per socket" | cut -d':' -f2 | xargs

In this example, we assume 8 physical cores.

2: Setting optimization parameters:

Optimization parameters are configured using the two following methods. Please choose the configuration method

according to your needs.

Method 1: Configure environment parameters directly:

export OMP_NUM_THREADS=physical cores
export KMP_AFFINITY="granularity=fine,verbose,compact,1,0"
export KMP_BLOCKTIME=1
export KMP_SETTINGS=1

Method 2: Add environment variables in the Python code that is running:

import os
os.environ["KMP_BLOCKTIME"] = "1"
os.environ["KMP_SETTINGS"] = "1"
os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"
if FLAGS.num_intra_threads > 0:
 os.environ["OMP_NUM_THREADS"]= # <physical cores>
config = tf.ConfigProto()
config.intra_op_parallelism_threads = # <physical cores>
config.inter_op_parallelism_threads = 1
tf.Session(config=config)

This section mainly explains how to run the inference benchmark on ResNet50. You can refer to the following reference

to inference using your machine learning/deep learning model.

Reference: https://github.com/IntelAI/models/blob/master/docs/image_recognition/tensorflow/Tutorial.md

Taking inference benchmarking for ResNet50* as an example, FP32, BFloat16, and Int8 are supported for model

inference.

Reference:

https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.m

d

FP32-based model inference:

https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.m

d#fp32-inference-instructions

INT8-based model inference:

https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.m

d#int8-inference-instructions

This section mainly explains how to run a training benchmark on ResNet50. You can refer to the following reference to

run your machine learning/deep learning model training.

FP32-based training:

https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.m

d#fp32-training-instructions

https://github.com/IntelAI/models/blob/master/docs/image_recognition/tensorflow/Tutorial.md
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md#int8-inference-instructions
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md#int8-inference-instructions
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md#fp32-training-instructions
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md#fp32-training-instructions

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 9 | Total 24

Among the many operations in the data center, it is a typical application to use recommendation systems to match

users with content they are interested in. Recommendation system is a type of information filtering system that learns

about users' interests according to their profiles and past behavior records and predict their ratings or preferences for a

given item. It changes the way a business communicates with users and enhances the interaction between the business

and its users.

When using deep learning, we find, from a large amount of complex raw data, the deep interactions between features

that are difficult to be expressed with traditional machines using artificial feature engineering. Related study outcomes

include Wide & Deep, DeepFM, FNN, DCN, and other models.

Using the Wide & Deep model as an example, the core idea is to take advantage of both the memorization capability of

a linear model and the generalization capability of the DNN model and optimize the parameters in these models at the

same time during training. This will result in better overall model prediction capabilities. Its structure is shown in the

figure below:

Wide

"Wide" is a generalized linear model, and its inputs mainly include original and interactive features. We can use cross-

product transformation to build the interactive features of K-group:

Deep

“Deep” is a DNN model, and the calculation for each layer is as follows:

Co-training

The Wide & Deep model uses co-training instead of integration. The difference is that co-training shares a loss function,

then updates the parameters in either part of the model at the same time, while integration trains N models

independently and fuses them together afterwards. Therefore, the output of the model is:

The above is the background information on the Wide & Deep model. Next, we will describe how to run inference

benchmarking for the Wide & Deep model.

Reference:

https://github.com/IntelAI/models/blob/master/docs/recommendation/tensorflow/Tutorial.md

Dataset preparation:

https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#Prepar

e-dataset

FP32-based model inference:

https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#fp32-

inference-instructions

INT8-based model inference:

https://github.com/IntelAI/models/blob/master/docs/recommendation/tensorflow/Tutorial.md
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#Prepare-dataset
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#Prepare-dataset
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#fp32-inference-instructions
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#fp32-inference-instructions

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 10 | Total 24

https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#int8-

inference-instructions

FP32-based

training:https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds

#fp32-training-instructions

Starting with TensorFlow 2.3.0, a new feature has been added. You can choose Eigen Threadpool for TensorFlow multi-

threading support instead of OpenMP, by using the compiling option --config=mkl_threadpool instead of --

config=mkl, when compiling the Tensorflow source code.

If the user wants to try this feature with TensorFlow 1.15, they need to download the source code that has been ported

and optimized by Intel and compile it (it should be particularly pointed out that Bazel* 0.24.1 needs to be installed for

the purpose):

git clone https://github.com/Intel-tensorflow/tensorflow.git
git checkout -b tf-1.15-maint remotes/origin/tf-1.15-maint
bazel --output_user_root=$BUILD_DIR build --config=mkl_threadpool -c opt --copt=-O3
//tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package $BUILD_DIR

After successfully completing the steps above, the TensorFlow wheel file can be found under the $BUILD_DIR path. For

example: tensorflow-1.15.0up2-cp36-cp36m-linux_x86_64.whl. The installation steps are as follows:

pip uninstall tensorflow
pip install $BUILD_DIR/<filename>.whl --user

Reference:

https://software.intel.com/content/www/us/en/develop/articles/getting-started-with-intel-optimization-of-

pytorch.html

Environment: Python3.6 or above

Step 1: Visit the official PyTorch website: https://pytorch.org/

Step 2: Select CPU

Currently, Intel oneDNN is integrated into the official version of PyTorch, so there is no need for additional installation

to have accelerated performance on the Intel® Xeon® Scalable Processor platform. Select “None” for CUDA. See the

figure below for details.

Step 3: Installation

https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#int8-inference-instructions
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#int8-inference-instructions
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#fp32-training-instructions
https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds#fp32-training-instructions
https://github.com/Intel-tensorflow/tensorflow.git
https://software.intel.com/content/www/us/en/develop/articles/getting-started-with-intel-optimization-of-pytorch.html
https://software.intel.com/content/www/us/en/develop/articles/getting-started-with-intel-optimization-of-pytorch.html
https://pytorch.org/

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 11 | Total 24

pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f
https://download.pytorch.org/whl/torch_stable.html

You may refer to the following website to learn more about optimization parameter settings for PyTorch* on the Intel®

Xeon® Scalable Processor platform.

Reference: https://software.intel.com/content/www/us/en/develop/articles/how-to-get-better-performance-on-

pytorchcaffe2-with-intel-acceleration.html

Intel® Extension for PyTorch is a Python extension of PyTorch that aims to improve the computational performance of

PyTorch on Intel® Xeon® Processors. Not only does this extension includes additional functions, but it also provides

performance optimizations for new Intel hardware.

The Github links to the Intel Extension for PyTorch are:

https://github.com/intel/intel-extension-for-pytorch

https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-

Functionality/IntelPyTorch_Extensions_AutoMixedPrecision

A problem that needs to be resolved in the recommendation system is how to generate a recommendation list with the

length of K for a given user that matches their interests and needs as much as possible (high accuracy) and as fast as

possible (low latency)? Conventional recommendation systems include two components: vector recall and ranking.

“Vector recall” roughly filters out hundreds or thousands of items from a huge recommendation pool that will most

likely interest the user, passes the results on to the ranking module for further sorting before the final recommendation

results are obtained.

Vector recall can be converted into a high-dimensional vector similarity search problem.

The Hierarchical Navigable Small World (HNSW) algorithm is a type of Approximate Nearest Neighbor (ANN) vector

similarity search algorithm based on graph structures. It is also one of the fastest and most precise algorithms.

https://software.intel.com/content/www/us/en/develop/articles/how-to-get-better-performance-on-pytorchcaffe2-with-intel-acceleration.html
https://software.intel.com/content/www/us/en/develop/articles/how-to-get-better-performance-on-pytorchcaffe2-with-intel-acceleration.html
https://github.com/intel/intel-extension-for-pytorch
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_Extensions_AutoMixedPrecision
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelPyTorch_Extensions_AutoMixedPrecision

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 12 | Total 24

Usually, the data type of the raw vector data is FP32. For many applications (such as image search), vector data can be

expressed in INT8/INT6 and the impact of quantization error on the final search result is limited. The “VNNI intrinsic”

instruction can be used for inner product calculations for INT8/INT6 vectors. Many experiments have shown that QPS

Performance has greatly improved, and that recall rate remains virtually unchanged. The reason for the improvement in

QPS performance is that the memory–bandwidth ratio for INT8/INT16 is smaller than for FP32, and VNNI instructions

accelerate the distance calculations in addition.

Currently, optimized source code is implemented based on the HNSWLib[10] open source project. We have already

ported it to the Faiss[9] framework, which is widely used in the industry.

To achieve the optimal performance, the following deployment steps are recommended:

1. Bind NUMA

2. Each physical CPU core executes a single query process

Reference command (using 1 socket and 24 cores as an example):

numactl -C 0-23 <test_program>

When the dataset is large (in the range of 100 million to billions for example), the traditional approach is to slice the

dataset into several smaller datasets to get the topK for each dataset separately before merging them back together at

the end. Since the amount of communication between multiple machines has increased, latency also increases while

the QPS performance decreases. Our experience with HNSW on large datasets show that it is better not to slice datasets

if possible, but rather establish indices and execute searches on complete datasets to get the best performance. When a

dataset is too large and there is not enough DDR space (e.g. local memory space), you can consider using PMem (Intel®

Optane™ persistent memory)
By saving the HNSW layer0 data on PMEM, the size of the dataset that can be supported has greatly increased (a single

socket can support an INT8 database with up to 4 billion records @ d=100). The persistence feature allows you to skip

the loading process for a large amount of data, which greatly reduces the time it takes to initialize.

Computations in neural networks are mainly concentrated in the convolutional layer and the fully connected layer. The

computations on these two layers can be expressed as: Y = X * Weights + Bias. Therefore, it is natural to focus on matrix

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 13 | Total 24

multiplication to optimize performance. The way to begin neural network model quantization is by trading-off precision

(limited) for performance improvement. By replacing 32-bit floating-point numbers with low-precision integers for

matrix operations, it not only speeds up calculations, but also compresses the model, thus saving memory bandwidth.

There are three approaches to the quantization of neural network models:

• Post-Training Quantization, which is supported by most AI frameworks.

• Quantization-Aware-Training, which inserts the FakeQuantization node into the FP32 model when the training

converges. It increases the quantization-induced noise. During the backpropagation stage of the training, the model

weights fall into a finite interval which results in better quantization precision.

• Dynamic Quantization is very similar to PTQ. They are both quantization methods used on post-trained models.

The difference lies in that the quantization factor in the activation layer is dynamically decided by the data range

used when the neural network model is run, while for PTQ samples from a small-scale pre-processed dataset are

used to obtain data distribution and range information in the activation layer, then records it permanently in the

newly generated quantization model. Of the Intel® AI Quantization Tools for TensorFlow which we will talk about

later on, onnxruntime supports this method at the backend only.

The basic procedure for the post-training quantization of neural networks is as follows:

1. Fuse FP32 OP to INT8 OP. For example, MatMul, BiasAdd and ReLU can be fused into a single quantized OP at the

fully connected layer, QuantizedMatMulWithBiasAndRelu. Different neural network frameworks support different

fuse-able OPs. For Intel® AI Quantization Tools for TensorFlow, which will be discussed later on, below we can see a

list of fuse-able OPs supported by TensorFlow:

https://github.com/intel/lpot/blob/master/lpot/adaptor/tensorflow.yaml#L190.

 For fuse-able OPs supported by pyTorch, please see :

https://github.com/intel/lpot/blob/master/lpot/adaptor/pytorch_cpu.yaml#L124

2. Quantize weights and save them in the quantized model.

3. Quantize the input/activation layer by sampling the calibration dataset to acquire the distribution and range

information of the data in the activation layer, which is then recorded in the newly generated quantized model.

4. The Requantize operation is fused into its corresponding INT8 OP to generate the final quantized model.

Using a simple model which includes two layers of MatMul as an example, we can observe the quantization process as

follows:

https://github.com/intel/lpot/blob/master/lpot/adaptor/tensorflow.yaml#L190
https://github.com/intel/lpot/blob/master/lpot/adaptor/pytorch_cpu.yaml#L124

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 14 | Total 24

Intel® AI Quantization Tools for TensorFlow is an open source Python library which provides API access for low-

precision quantization for cross-neural network development frameworks. It is intended to provide simple, easy-to-use

and precision-driven auto tuning tools for the quantization of models for accelerating the inference performance of

low-precision models on the 3rd Gen Intel® Xeon® Scalable Processor platform.

Reference: https://github.com/intel/lpot

https://github.com/intel/lpot

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 15 | Total 24

Intel® AI Quantization Tools for TensorFlow currently support the following Intel optimized deep learning frameworks:

• Tensorflow*

• PyTorch*

• Apache* MXNet

• ONNX Runtime

https://www.tensorflow.org/
https://pytorch.org/
https://mxnet.apache.org/
https://onnx.ai/

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 16 | Total 24

The frameworks and their versions that have already been verified are shown below:

OS Python Framework Version

CentOS 7.8

Ubuntu 18.04

3.6

3.7

TensorFlow

2.2.0

1.15.0 UP1

1.15.0 UP2

2.3.0

2.1.0

1.15.2

PyTorch 1.5.0+cpu

Apache* MXNet
1.7.0

1.6.0

ONNX Runtime 1.6.0

The tuning strategies supported by Intel® AI Quantization Tools for Tensorflow include:

• Basic

• Bayesian

• Exhaustive

• MSE

• Random

• TPE

The workflow for Intel® AI Quantization Tools for TensorFlow is shown below. The model quantization parameters

matching the precision loss target are automatically selected according to the set tuning strategy, and the quantized

model is generated:

For details on installation, refer to: https://github.com/intel/lpot/blob/master/README.md

Step 1: Use Anaconda to create a Python3.x virtual environment with the name of lpot. We are using Python 3.7 here

as an example:

conda create -n lpot python=3.7
conda activate lpot

https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#basic
https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#bayesian
https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#exhaustive
https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#mse
https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#random
https://github.com/intel/lpot/blob/master/docs/tuning_strategies.md#tpe
https://github.com/intel/lpot/blob/master/README.md

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 17 | Total 24

Step 2: Install lpot; the two following installation methods are available:

Installing with the binary file:

pip install lpot

Install from the source code

git clone https://github.com/intel/lpot.git
cd lpot
pip install –r requirements.txt
python setup.py install

We are using ResNet50 v1.0 as an example to explain how to use this tool for quantization.

Step 1: Download and decompress the ImageNet validation dataset:

mkdir –p img_raw/val && cd img_raw
wget http://www.image-
net.org/challenges/LSVRC/2012/dd31405981ef5f776aa17412e1f0c112/ILSVRC2012_img_val.tar
tar –xvf ILSVRC2012_img_val.tar -C val

Step 2: Move the image files to the child directories sorted by label:

cd val
wget -qO-
https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

Step 3: Use the script, prepare_dataset.sh, to convert raw data to the TFrecord format:

cd examples/tensorflow/image_recognition
bash prepare_dataset.sh --output_dir=./data --raw_dir=/PATH/TO/img_raw/val/ --
subset=validation

Reference:

https://github.com/intel/lpot/tree/master/examples/tensorflow/image_recognition#2-prepare-dataset

wget https://storage.googleapis.com/intel-optimized-
tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

Edit the file: examples/tensorflow/image_recognition/resnet50_v1.yaml, making sure the dataset path for

quantization\calibration, evaluation\accuracy and evaluation\performance is the user's real local path. It should be

where the TFrecord data generated previously during the data preparation stage, is located.

cd examples/tensorflow/image_recognition
bash run_tuning.sh --config=resnet50_v1.yaml \
--input_model=/PATH/TO/resnet50_fp32_pretrained_model.pb \
--output_model=./lpot_resnet50_v1.pb

Reference:

https://github.com/intel/lpot/tree/master/examples/tensorflow/image_recognition#1-resnet50-v10

bash run_benchmark.sh --input_model=./lpot_resnet50_v1.pb --config=resnet50_v1.yaml

The output is shown below. The performance data is for reference only:

https://github.com/intel/lpot.git
https://github.com/intel/lpot/blob/master/examples/tensorflow/image_recognition/prepare_dataset.sh
https://github.com/intel/lpot/tree/master/examples/tensorflow/image_recognition#2-prepare-dataset
https://github.com/intel/lpot/blob/master/examples/tensorflow/image_recognition/resnet50_v1.yaml
https://github.com/intel/lpot/tree/master/examples/tensorflow/image_recognition#1-resnet50-v10

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 18 | Total 24

accuracy mode benchmark result:
Accuracy is 0.739
Batch size = 32
Latency: 1.341 ms
Throughput: 745.631 images/sec

performance mode benchmark result:
Accuracy is 0.000
Batch size = 32
Latency: 1.300 ms
Throughput: 769.302 images/sec

Intel® Distribution of OpenVINOTM toolkit’s official website and download websites:

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html

Online documentation:

https://docs.openvinotoolkit.org/latest/index.html

Online documentation in Simplified Chinese:

https://docs.openvinotoolkit.org/cn/index.html

The Intel® Distribution of OpenVINOTM toolkit is used to accelerate the development of computer vision and deep

learning applications. It supports deep learning applications with various accelerators, including CPUs, GPUs, FPGAs,

and Intel® Movidius™ CPUs on the Intel® Xeon® Processor platform, and it also directly supports heterogenous

execution.

The Intel® Distribution of OpenVINOTM toolkit is designed to improve the performance and reduce the development

time of computer vision processing and deep learning inference solutions. It includes two components: computer vision

and deep learning development kits.

The Deep Learning Deployment Toolkit (DLDT) is a cross-platform tool for accelerating deep learning inference

performance, and includes the following components:

• Model Optimizer: converts models trained with Caffe*, TensorFlow, Mxnet, and other frameworks into

Intermediate Representations (IR).

• Inference Engine: executes the IR on CPU, GPU, FPGA, VPU, and other hardware. It automatically calls the

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://docs.openvinotoolkit.org/latest/index.html

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 19 | Total 24

hardware acceleration kit to accelerate inference performance.

The Intel® Distribution of OpenVINOTM toolkit Workflow:

You can refer to the installation documentation in Simplified Chinese:

Installing the Intel® Distribution of OpenVINO™ toolkit for Linux*:
https://docs.openvinotoolkit.org/downloads/cn/I03030-5-Install Intel_ Distribution of OpenVINO_ toolkit for Linux –

OpenVINO_ Toolkit.pdf

Introduction to the Intel® Deep Learning Deployment toolkit:
https://docs.openvinotoolkit.org/downloads/cn/I03030-9-Introduction to Intel_ Deep Learning Deployment Toolkit –

OpenVINO_ Toolkit.pdf

Image Classification C++ Sample (Async):
https://docs.openvinotoolkit.org/downloads/cn/I03030-10-Image Classification Cpp Sample Async – OpenVINO_

Toolkit.pdf

Object Detection C++ Sample (SSD):
https://docs.openvinotoolkit.org/downloads/cn/I03030-11-Object Detection Cpp Sample SSD - OpenVINO_ Toolkit.pdf

Automatic Speech Recognition C++ Sample:
https://docs.openvinotoolkit.org/downloads/cn/I03030-12-Automatic Speech Recognition Cpp Sample - OpenVINO_

Toolkit.pdf

Action Recognition Python* Demo:
https://docs.openvinotoolkit.org/downloads/cn/I03030-13-Action Recognition Python Demo - OpenVINO_ Toolkit.pdf

Crossroad Camera C++ Demo:
https://docs.openvinotoolkit.org/downloads/cn/I03030-14-Crossroad Camera Cpp Demo - OpenVINO_ Toolkit.pdf

Human Pose Estimation C++ Demo:
https://docs.openvinotoolkit.org/downloads/cn/I03030-15-Human Pose Estimation Cpp Demo - OpenVINO_

Toolkit.pdf

Interactive Face Detection C++ Demo:
https://docs.openvinotoolkit.org/downloads/cn/I03030-16-Interactive Face Detection Cpp Demo - OpenVINO_

Toolkit.pdf

By inferencing on an INT8-based model and using Intel DL Boost on the Intel® Xeon® Scalable Processor platform for

acceleration, you can greatly increase inference efficiency. At the same time, it saves computing resources and reduces

https://docs.openvinotoolkit.org/downloads/cn/I03030-5-Install%20Intel_%20Distribution%20of%20OpenVINO_%20toolkit%20for%20Linux%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-5-Install%20Intel_%20Distribution%20of%20OpenVINO_%20toolkit%20for%20Linux%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-5-Install%20Intel_%20Distribution%20of%20OpenVINO_%20toolkit%20for%20Linux%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-9-Introduction%20to%20Intel_%20Deep%20Learning%20Deployment%20Toolkit%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-10-Image%20Classification%20Cpp%20Sample%20Async%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-11-Object%20Detection%20Cpp%20Sample%20SSD%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-12-Automatic%20Speech%20Recognition%20Cpp%20%20Sample%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-13-Action%20Recognition%20Python%20Demo%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-14-Crossroad%20Camera%20Cpp%20%20Demo%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-15-Human%20Pose%20Estimation%20Cpp%20Demo%20-%20OpenVINO_%20Toolkit.pdf
https://docs.openvinotoolkit.org/downloads/cn/I03030-16-Interactive%20Face%20Detection%20Cpp%20%20Demo%20-%20OpenVINO_%20Toolkit.pdf

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 20 | Total 24

power consumption. The 2020 version and later versions of OpenVINO™ all provide INT8 quantization tools which

support the quantization of FP32-based models.

The INT8-based model quantization tool provided by OpenVINO is a Post-training Optimization Toolkit (POT) is used

to optimize and quantize trained models. There is no need to re-train or fine-tune models or to modify model

structures. The figure below shows the process of how OpenVINO is used to optimize new models.

Step 0: Acquire the trained model,

Step 1: POT generation and optimization,

Step 2: Optional operation (Whether to fine-tune the model will be determined according to the actual situation for

better accuracy), and

Step 3: Use OpenVINO IE for model inference.

POT provides an independent command line tool and Python API and it mainly supports the following features:

➢ Two types of post-training INT8 quantization algorithms: fast DefaultQuantization and precise

AccuracyAwareQuantization.

➢ Uses the Tree-structured Parzen Estimator for global optimization of post-training quantization parameters

➢ Supports both symmetrical and asymmetrical quantization

➢ Supports compression for multiple hardware platforms (CPU, GPU)

➢ Quantizes all channels at the convolutional layer and full connection layer

➢ Supports multiple applications: computer vision, recommendation system

➢ Provides customized optimization methods through provided API

Please refer to the following websites for instructions of operations and use:

Introduction to the Post-Training Optimization Toolkit

https://docs.openvinotoolkit.org/latest/pot_README.html

Low Precision Optimization Guide:

https://docs.openvinotoolkit.org/latest/pot_docs_LowPrecisionOptimizationGuide.html

Post-training Optimization Toolkit Best Practices

https://docs.openvinotoolkit.org/latest/pot_docs_BestPractices.html

Post-training Optimization Toolkit Frequently Asked Questions

https://docs.openvinotoolkit.org/latest/pot_docs_FrequentlyAskedQuestions.html

INT8 quantization and optimization using DL Workbench’s web interface

https://docs.openvinotoolkit.org/latest/workbench_docs_Workbench_DG_Int_8_Quantization.html

https://docs.openvinotoolkit.org/latest/pot_compression_algorithms_quantization_default_README.html
https://docs.openvinotoolkit.org/latest/pot_compression_algorithms_quantization_accuracy_aware_README.html
https://docs.openvinotoolkit.org/latest/pot_README.html
https://docs.openvinotoolkit.org/latest/pot_docs_LowPrecisionOptimizationGuide.html
https://docs.openvinotoolkit.org/latest/pot_docs_BestPractices.html
https://docs.openvinotoolkit.org/latest/pot_docs_FrequentlyAskedQuestions.html
https://docs.openvinotoolkit.org/latest/workbench_docs_Workbench_DG_Int_8_Quantization.html

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 21 | Total 24

Intel® Data Analytics Acceleration Library (Intel® DAAL)

As a branch of artificial intelligence, machine learning is currently attracting a huge amount of attention. Machine

learning-based analytics is also getting increasingly popular. The reason is that, when compared to other analytics,

machine learning can help IT staff, data scientists, and various business teams and their organizations to quickly

unleash the strengths of AI. Furthermore, machine learning offers many new commercial and open-source solutions,

providing a vast ecosystem for developers. In addition, developers can choose from a variety of open-source machine

learning libraries such as Scikit-learn, Cloudera* and Spark* MLlib.

Intel® Distribution for Python* is a Python development toolkit for artificial intelligence software developers. It can be

used to accelerate computational speed of Python on the Intel® Xeon® Scalable Processor platform. It is available at

Anaconda*, and it can also be installed and used with Conda*, PIP*, APT GET, YUM, Docker*, among others. Reference

and download site: https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html

Intel® Distribution for Python* features:

✓ Out-of-the-box: no or little change to source code required to achieve faster Python application performance.

✓ The Integrated Intel® performance libraries: Intel® Math Kernel Library (MKL) and Intel® Data Analytics

Acceleration Library (Intel® DAAL), for example, can be used to accelerate NumPy, SciPy, and scikit-learn*

✓ Latest vector and multithread instructions: Numba* and Cython can be combined to improve concurrency and

vectorization efficiency.

https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 22 | Total 24

Intel® Data Analytics Acceleration Library (DAAL) is designed for data scientists to accelerate data analytics and

prediction efficiency. In particular, it can take full advantage of vectorization and multithreading for applications with

huge amount of data, as well as utilize other technologies to increase the overall performance of machine learning on

the Intel® Xeon® Scalable Processor platform.

Intel® DAAL is a complete end-to-end software solution designed to help data scientists and analysts quickly build

everything from data pre-processing, to data feature engineering, data modeling and deployment. It provides various

data analytics needed to develop machine learning and analytics as well as high-performance building blocks required

by algorithms. It currently supports linear regression, logic regression, LASSO, AdaBoost, Bayesian classifiers, support

vector machines, k-nearest neighbors, k-means clustering, DBSCAN clustering, various types of decision trees, random

forest, gradient boosting, and other classic machine learning algorithms. These algorithms are highly optimized to

achieve high performance on Intel® processors. For example, a leading big data analytics technology and service

provider has used these resources to improve the performance of data mining algorithms by several times.

To make it easier for developers to use Intel® DAAL in machine learning applications in Intel-based environments, Intel

has open-sourced the entire project (https://github.com/intel/daal), and provides full-memory, streaming and

distributed algorithm support for different big data scenarios. For example, DAAL Kmeans can be combined with Spark

to perform multi-node clustering on a Spark cluster. In addition, DAAL provides interfaces for C++, Java*, and Python.

https://github.com/intel/daal

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 23 | Total 24

DAAL4py

In order to provide better support for Scikitlearn, which is the most widely used with Python, Intel® DAAL provides a

very simple Python interface, DAAL4py (please see the open source website for more details:

https://github.com/IntelPython/daal4py). It can be used seamlessly with Scikitlearn and provides acceleration for

machine learning algorithms at the underlying layer.

Developers do not need to modify the Scikitlearn source code to benefit from the advantages of automatic

vectorization and multithreading. DAAL4py currently supports the following algorithms in Scikitlearn:

• Sklearn linear regression, Sklearn ridge regression and logic regression

• PCA

• KMeans

• pairwise_distance

• SVC (SVM classification)

Download and install Intel® Distribution for Python* (Intel® DAAL already included):

FYI: https://software.intel.com/en-us/distribution-for-python

Installing Intel® DAAL separately:

FYI: https://software.intel.com/en-us/daal.

Intel® DAAL Developer Guide:

FYI：https://software.intel.com/en-us/daal-programming-guide

There are two ways to use Intel® DAAL to accelerate scikit-learn:

Method 1: Using the command line

python -m daal4py <your-scikit-learn-script>

Method 2: Adding it to source code

import daal4py.sklearn
daal4py.sklearn.patch_sklearn('kmeans')

https://github.com/IntelPython/daal4py
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/daal.%20Check%20at%20references%20%5b1
https://software.intel.com/en-us/daal-programming-guide

Deep Learning with Intel® AVX512 and Intel® DL Boost on 3rd Generation Intel® Xeon® Scalable Processors

Revision 1.0 Page 24 | Total 24

[1] Intel® AVX-512 info: https://colfaxresearch.com/skl-avx512/

[2] Intel® Optimized AI Frameworks: https://software.intel.com/en-us/frameworks

[3] Intel® Distribution of OpenVINO™ toolkit: https://docs.openvinotoolkit.org/

[4] Intel® Analytics Zoo: https://github.com/intel-analytics/analytics-zoo

[5] Hands-on IDP and Intel® DAAL : https://software.intel.com/en-us/videos/get-your-hands-dirty-with-intel-

distribution-for-python

[6] IDP benchmarks: https://software.intel.com/en-us/distribution-for-python/benchmarks

[7] Intel® DL Boost : https://www.intel.ai/increasing-ai-performance-intel-dlboost/#gs.3cxhiw

[8] Intel® DL Boost: https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-

product-overview.pdf

https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-

and-training.html

[9] Open source of Faiss project: https://github.com/facebookresearch/faiss

[10] Open source of HNSWLib project: https://github.com/nmslib/hnswlib

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Code names are used by Intel to identify products, technologies, or services that are in development and not

publicly available. These are not "commercial" names and not intended to function as trademarks

The products described may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

https://colfaxresearch.com/skl-avx512/
https://software.intel.com/en-us/frameworks
https://docs.openvinotoolkit.org/
https://github.com/intel-analytics/analytics-zoo
https://software.intel.com/en-us/videos/get-your-hands-dirty-with-intel-distribution-for-python
https://software.intel.com/en-us/videos/get-your-hands-dirty-with-intel-distribution-for-python
https://software.intel.com/en-us/distribution-for-python/benchmarks
https://www.intel.ai/increasing-ai-performance-intel-dlboost/#gs.3cxhiw
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html
https://github.com/facebookresearch/faiss
https://github.com/nmslib/hnswlib

