
On process pinning options: MARCONI-FUSION

Tiago Tamissa Ribeiro1, ∗

1Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Boltzmannstrae 2, 85748 Garching, Germany

(Dated: November 16, 2017)

CONTENTS

I. Introduction: process binding on MARCONI 1

A. OpenMP thread affinity 2

B. MPI task affinity 5

1. Reference 7

C. Hybrid task/thread affinity 8

1. Reference 12

II. Single-node scaling results in MARCONI 12

III. Summary and outlook 14

IV. Acknowledgements 14

References 14

I. INTRODUCTION: PROCESS BINDING ON MARCONI

The MARCONI supercomputer uses the popular cache-coherent Non-Uniform-Memory-

Access (ccNUMA) architecture in its nodes. This means in particular that not all the

cores are equivalent in terms of how fast they can access data from the node’s main

memory. Specifically, a node on MARCONI has two sockets with 18 cores each, yielding

36 cores sharing a total of 128 GB of main memory. However, this memory is made out of

two banks (of 64 GB), each directly connected to one of the two sockets, as schematized

in Fig. 6. Using NUMA terminology, we say that the cores on each socket together with

the attached memory bank form a NUMA node. Thus, a compute node on MARCONI is

comprised of two NUMA nodes. For the sake of simplicity, we shall denominate NUMA

∗ email: tiago.ribeiro@ipp.mpg.de; URL: http://www.rzg.mpg.de/˜ttr/

Typeset by REVTEX

mailto:tiago.ribeiro@ipp.mpg.de
http://www.rzg.mpg.de/~ttr/

2

node by socket in the remainder text. Therefore, even though any core on the compute

node can access the whole main memory of the node, the access is faster within the same

socket than across the sockets. As a result, it is generally very important performance-wise

to specify appropriate binding affinities of the computational processes to the hardware

cores within a node at run-time, and to ensure that the processes remain pinned that way

throughout the simulation. This holds for both OpenMP threads, as well as MPI tasks,

including obviously their combination in hybrid codes.

In the remaining text we present examples of MARCONI PBS batch submission scripts

that allow to obtain several relevant process binding affinities, when invoked together with

the Intel MPI library. Indeed, OpenMP thread and MPI task pinning are discussed in

Secs. I A and I B, respectively, while Sec. I C describes the hybrid case of using both. The

first two provide the simplest batch submission script examples for codes which are either

purely OpenMP or purely MPI. The latter provides a more general case, which although

slightly more involved, works also for pure OpenMP and MPI cases, so it can be regarded

as an interesting alternative if one does not want to have different scripts for different

parallelization paradigms. Finally, Sec. II provides some intra-node strong scaling results

of a production code (REFMULXp [1]), which serve to emphasize the practical relevance

of the process binding concepts explained before.

The material presented here is not intended to be, in any fashion, exhaustive. It merely

attempts to provide a sub-set of rules that are of practical use for the typical cases encoun-

tered within codes in the framework of the EUROfusion consortium. For more detailed

information we suggest consulting the Intel manual pages on Process Pinning [3] and re-

spective subsections, Environment Variables for Process Pinning [4] and Interoperability

with OpenMP API [5].

A. OpenMP thread affinity

Let’s begin with the pure OpenMP threaded case, for which the script provided in Tab.

I is our baseline example. The lines that control the number of threads to be spawned and

their binding affinity to the hardware cores are highlighted in blue. The first assumption

that we make here, and that will be clear later on, is that one needs to ensure that pinning

of the threads throughout the run. This is clearly reasonable, even before looking at any

results, since we know already that the main memory bandwidth is not uniform within

the node. This can be achieved via the KMP AFFINITY environment variable. Therefore, it

is recommended to always set it explicitly in the batch script.

https://software.intel.com/en-us/node/528816
https://software.intel.com/en-us/node/528818
https://software.intel.com/en-us/node/528819
https://software.intel.com/en-us/node/528819

3

The example script sets KMP AFFINITY=compact, whereby the processes are mapped

to neighboring cores as closely as possible, filling first the first socket, and only if there

are more threads than cores per socket, do the threads begin to fill the second socket.

This also means that there is no need to turn on the option OMP PROC BIND=true, which

is superseded by the former. We further added the option verbose so that the explicit

binding of the threads to the cores is written to the standard error file, which makes it

easy to confirm the actual affinity used in the corresponding simulation afterwards.

#!/bin/bash

#$ -cwd

#PBS -N omp_12

#PBS -l select=1:ncpus=36:mpiprocs=1:mem=118GB

#PBS -l walltime=01:00:00

#PBS -q xfuaprod

#PBS -A <project>

#PBS -j eo

#PBS -m abe

#PBS -M <email.address>@ipp.mpg.de

module load <needed modules>

export OMP_NUM_THREADS=12

export KMP_AFFINITY=compact,verbose

BIN=a.out

CMDLOPT=’’

./$BIN $CMDLOPT

TABLE I. Basic script used to run a.out with 12 threads distributed according to the default

affinity on a MARCONI node, which at the time of writing of this document was compact.

The compact affinity of the 12 threads (processes) yielded by this script is depicted on

the left side of Fig. 1. However, depending on the algorithm at hand, this might not

necessarily be the best choice of binding pattern, as we shall see later, in Sec. II. Changing

it is quite simple, namely, if we replace the blue line setting the KMP AFFINITY in Tab. I

with the following one

export KMP_AFFINITY=scatter,verbose

a scatter affinity is obtained, whereby the processes are mapped as remotely as possible

so as not to share common resources, in this case, the L3 caches and the memory banks

4

in each socket (see Fig. 6). The particular example yielded by the modified script is also

illustrated in Fig. 1, but now on its right side.

FIG. 1. Schematics of 12 processes (threads or tasks) distributed with compact (left) and scatter

(right) affinity on a MARCONI node. Note how consecutive processes alternate between sockets

on the latter.

If no value is explicitly set for the number of OpenMP threads, then the PBS system

will fix this automatically to OMP NUM THREADS=ncpus, where ncpus is the number of

cores requested in the select PBS directive, in our example 36. Note that, alternatively

to using the variable OMP NUM THREADS, the number of threads can also be set by adding

ompthreads to the select PBS directive above. For instance, for 12 threads, this would be

#PBS -l select=1:ncpus=36:mpiprocs=1:ompthreads=12:mem=118GB

It is also noteworthy to comment on the value used for the PBS batch resource list

option ncpus=36. This tells the batch scheduler to reserve the full node, even if less

resources are requested, like in the example provided (12 threads, instead of 36). On

one hand, for the EUROfusion dedicated part of MARCONI (MARCONI-FUSION), this

makes no difference in terms of budget accounting because we can only ask for full nodes,

unlike the remaining part of the machine where nodes can be shared by different jobs.

On the other hand, ncpus=36 is really needed for pinning affinities other than compact,

because resources (cores) not included in the PBS select directive will not be available at

run-time. For example, if we were to set it instead to the number of threads in the script

above, namely ncpus=12, then the setting KMP AFFINITY=scatter would, in practice, yield

a compact affinity. An even more extreme situation would be to set ncpus=1, in which

case all the 12 threads would be pinned to core 0 of the node, regardless of the pinning

affinity specified.

5

B. MPI task affinity

For a domain decomposed code, much of the same considerations about process pinning

to the hardware resources (cores) apply. In this case, the processes are MPI tasks, so a

different set of environment variables is responsible for specifying the affinities. For the

simplest case of a pure MPI code, our baseline script is listed in Tab. II. As before, the

lines highlighted in blue are the ones used to tune binding affinities, which now refer to

the MPI tasks. The first sets I MPI DEBUG=5 and its purpose is similar to the verbose

keyword used before for the KMP AFFINITY variable, namely, to write the explicit binding

of the processes (MPI task ranks) to the cores to the standard error. The second line turns

on the MPI task pinning I MPI PIN=1, so that the chosen affinity is enforced throughout

the simulation, preventing the task to move between cores. Note that the process pinning

features presented in the following are only valid if this option is turned on, which according

to Intel reference pages [4] is the default value.

#!/bin/bash

#$ -cwd

#PBS -N mpi_12

#PBS -l select=1:ncpus=36:mpiprocs=12:mem=118GB

#PBS -l walltime=01:00:00

#PBS -q xfuaprod

#PBS -A <project>

#PBS -j eo

#PBS -m abe

#PBS -M <email.address>@ipp.mpg.de

module load <needed modules>

export I_MPI_DEBUG=5

export I_MPI_PIN=1

export I_MPI_PIN_PROCESSOR_LIST=0-35

BIN=a.out

CMDLOPT=’’

mpirun -prepend-rank ./$BIN $CMDLOPT

TABLE II. Basic script used to run a.out with 12 MPI tasks distributed compactly on a MARCONI

node. The -prepend-rank option simply adds the MPI rank number in front of each output line,

which can be a useful information.

6

The last line in blue is the one that actually sets the affinity, and it does so by explicitly

providing a <proclist>, which in the case of MARCONI, where hyper-threading is disabled,

corresponds to a list of cores, specified in terms of their logical numbering. Note that it

is typical for Intel NUMA nodes to have different logical and physical numberings for

the processors, as can be seen from the schematics of a MARCONI production node in

Fig. 6. By specifying the <proclist> to cover all cores within the node in their increasing

sequential order, this tells the Intel MPI library to place the MPI tasks such that their

rank matches the logical core number. In other words, place the MPI tasks requested

using a compact affinity, as depicted on the left side of Fig. 1, except that now the 12

processes are 12 MPI tasks.

To obtain the scatter affinity shown on the right side of the same picture, all that is

needed is to change the <proclist> accordingly. Namely, by replacing the corresponding

line in the script Tab. II with the following one.

export I_MPI_PIN_PROCESSOR_LIST=0,18,1,19,2,20,3,21,4,22,5,23

This ensures that both sockets of the node are used if more than one MPI task is requested,

whereas in the compact affinity case, this only happens if more that 18 MPI tasks are

used. An alternative way to enforce the property of using both sockets, while still keeping

consecutive task ranks as close to each other as possible, is to use instead the following.

export I_MPI_PIN_PROCESSOR_LIST=0-5,18-23

We shall call this bunch affinity, following the nomenclature of the Intel MPI library,

whereby the processes (domains) are mapped consecutively as closely as possible but at

the same time distributed over both sockets in a balanced way. This kind of affinity is

illustrated in Fig. 2. However, it must be pointed out that this particular configuration

only works as intended for 12 MPI tasks. With less than 12 tasks, more of them will be

placed on the first socket than on the second, creating an asymmetric distribution; with

more than 12, the extra tasks will start to be placed in the already occupied cores following

the same pattern specified in the <proclist=0-5,18-23> in a round-robin fashion, using the

resources in a sub-optimal manner, and further potentially creating load-balance issues.

Therefore, for the bunch affinity to work appropriately with different numbers of tasks,

the <proclist> must be adapted accordingly.

Finally, it is worth mentioning that there is an alternative way to easily obtain the

scatter and bunch affinities invoking the same Intel MPI library environmental variable,

7

FIG. 2. Schematics of 12 processes distributed with bunch affinity on a MARCONI node. Note

that now consecutive processes stay close to each other within each socket.

without having to specify explicitly the <proclist>, as was done before. Instead, a prede-

fined <procset>:<map> pair can be invoked. So, for a scatter affinity one can use

export I_MPI_PIN_PROCESSOR_LIST=allcores:map=scatter

whereas for a bunch affinity one would use

export I_MPI_PIN_PROCESSOR_LIST=allcores:map=bunch

corresponding to Figs. 1(right) and 2, respectively, when 12 MPI tasks are requested.

It should be noted that there is no I MPI PIN PROCESSOR LIST configuration implicitly

exported by the PBS scheduler, nor is I MPI PIN set, so, to be on the safe side, the

recommended practice is to set them explicitly in the batch script, as done in the examples

provided.

1. Reference

The available options for I MPI PIN PROCESSOR LIST= <procset>:<map> are

• <procset>=all, allcores, allsocks

• <map>=bunch, scatter, spread.

For more details consult the reference guide [4].

8

C. Hybrid task/thread affinity

So far we have been dealing with pure OpenMP or pure MPI codes, whose basic pin-

ning strategies were discussed in Secs. I A and I B, respectively. Now we move to the

hybrid case of mixing both parallelization paradigms. The Intel MPI library provides

alternative environment variables that allow the interoperability with the OpenMP API.

Namely, I MPI PIN DOMAIN defines the concept of domains, which are non-overlapping

subsets of logical processors within a node, with each one mapped to a single MPI task

that can have OpenMP threads below. Such domains can then be pinned with a given

affinity. The threads spawned inside them can also be pinned using KMP AFFINITY. It

is noteworthy that, if the I MPI PIN DOMAIN environment variable is defined, then the

I MPI PIN PROCESSOR LIST setting is ignored. In other words, the Intel MPI process

affinity environment variables that are interoperable with OpenMP supersede the ones

described in the previous section. Actually, they can even be used as an alternative

for pure MPI code, provided that, either the domain environment variable is set to

I MPI PIN DOMAIN=core, or that it is set to I MPI PIN DOMAIN=omp with the number of

OpenMP threads set to OMP NUM THREADS=1, even if the code being ran does not use

OpenMP threads whatsoever. Both alternatives essentially say that each MPI domain

maps to one core only. The reason we dedicated the previous section to the case of pure

MPI codes is that the concepts and subtleties just described can simply be ignored by their

users. However, for a user/developer of a hybrid code, even if running it just in pure MPI

or OpenMP mode, it makes sense to have a single script that works for all situations (pure

OpenMP, pure MPI or hybrid), rather than having three different scripts to contemplate

each separate case. The purpose of this section is to lay down the basic rules to devise

such a baseline “hybrid” script.

Let’s start with the case of a pure MPI code and mimic the last two affinity configu-

rations of Sec. I B. By replacing the line I MPI PIN PROCESSOR LIST= <procset>:<map>,

in the script Tab. II with

export I_MPI_PIN_DOMAIN=omp | export I_MPI_PIN_DOMAIN=core

export I_MPI_PIN_ORDER=scatter | export I_MPI_PIN_ORDER=scatter

export OMP_NUM_THREADS=1 | <leave OMP_NUM_THREADS unset>

or with

9

export I_MPI_PIN_DOMAIN=omp | export I_MPI_PIN_DOMAIN=core

export I_MPI_PIN_ORDER=bunch | export I_MPI_PIN_ORDER=bunch

export OMP_NUM_THREADS=1 | <leave OMP_NUM_THREADS unset>

we obtain the scatter affinity of Fig. 1(right), or the bunch affinity of Fig. 2, respectively.

The default value for I MPI PIN ORDER is compact. Note that in the above script lines on

the right side, not explicitly setting the number of threads is equivalent to setting them

to OMP NUM THREADS=ncpus, which is the default value. However, this does not affect

the size of the domain, which in this case is set independently of the number of threads.

Note also that besides the bunch ordering, there is also the spread ordering available, but

on MARCONI’s dual-socket node architecture (see Fig. 6), they are in practice almost

equivalent.

To generalize this to an hybrid OpenMP/MPI code is pretty straight forward and

the easiest way to show this is to provide an example of the corresponding MARCONI

batch script, just like we did in previous sections. Let’s assume that we want to run four

MPI tasks, each spawning three OpenMP threads, for a total of 12 processes. The script

in Tab. III does so by creating four domains, each with the size of the three OpenMP

threads, and then pinning them with a compact (or bunch) affinity. Inside each domain,

the threads are pinned with compact affinity, for the resulting hybrid process pinning

affinity illustrated on the left (or right) side of Fig. 3.

FIG. 3. Schematics of four domains (MPI tasks) each with three OpenMP threads, for a total of

12 processes, distributed with compact (left) and bunch (right) affinities on a MARCONI node.

The numbers inside the coloured squares represent <task rank>:<thread index>

It is worth noting the reason why we always used KMP AFFINITY=compact with the

hybrid script examples. On MARCONI, since the first level of non-shared resources is the

L3 cache, which is local to each socket, the only way to obtain a scattered affinity for the

10

#!/bin/bash

#$ -cwd

#PBS -N hyb_4_3

#PBS -l select=1:ncpus=36:mpiprocs=4:mem=118GB

#PBS -l walltime=01:00:00

#PBS -q xfuaprod

#PBS -A <project>

#PBS -j eo

#PBS -m abe

#PBS -M <email.address>@ipp.mpg.de

module load <needed modules>

export I_MPI_DEBUG=5

export I_MPI_PIN_DOMAIN=omp

export I_MPI_PIN_ORDER=compact <OR> export I_MPI_PIN_ORDER=bunch

export OMP_NUM_THREADS=3

export KMP_AFFINITY=verbose,compact

BIN=a.out

CMDLOPT=’’

mpirun -prepend-rank ./$BIN $CMDLOPT

TABLE III. Basic script used to run the hybrid code a.out with four domains (MPI tasks) each

with three OpenMP threads, for a total of 12 processes, distributed with compact <OR> bunch

affinities on a MARCONI node.

threads is if only a single domain with more than 18 threads is used. So, in practice, as

soon as two or more domains (MPI tasks) per node are requested, KMP AFFINITY=scatter

yields in practice a compact affinity, because each domain fits inside a single socket, i.e.

there are no non-shared resource at the domain level.

To finalize this section, we refer to the most flexible way to specify the affinity of

the MPI domains. Rather than relying on the I MPI PIN ORDER presets used before,

one can directly specify a mask domain, pretty much like we did before in Sec. I B

for the pure MPI code using the environment variable I MPI PIN PROCESSOR LIST. In

the hybrid case this is however slightly more complicated because, instead of provid-

ing a list of cores, we need to provide instead a hexadecimal mask describing each do-

main requested. So if, like before, four MPI tasks are used each with three OpenMP

threads, this means we need four domains and so, we need to provide four masks, with

11

FIG. 4. Schematics of four domains (MPI tasks) each with three OpenMP threads, for a total of

12 processes, distributed with a tailored affinity on a MARCONI node.

the syntax I MPI PIN DOMAIN=[mask0,mask1,mask2,mask3]. In binary format, each core

in a MARCONI node is represented by a sequence of 35 zeros and a one in the po-

sition corresponding to that core’s logical number. For instance, core 0 has the bi-

nary mask “000000000000000000000000000000000001”, core 1 has the binary mask

“000000000000000000000000000000000010”, all the way to core 35, whose binary mask

is “100000000000000000000000000000000000”. If we want to specify the four domains

represented in Fig. 4 in terms of their binary masks, these would be:

• domain rank 0 (green): cores {0,1,2}

binary mask: “000000000000000000000000000000000111”

• domain rank 1 (red): cores {6,7,8}

binary mask: “000000000000000000000000000111000000”

• domain rank 1 (blue): cores {12,13,14}

binary mask: “000000000000000000000111000000000000”

• domain rank 1 (magenta): cores {18,19,20}

binary mask: “000000000000000111000000000000000000”.

These four masks in binary basis are quite long. It is much more convenient to represent

them in a hexadecimal basis, in which case they take the more condensed representation

[7,1C0,7000,1C000]. This is precisely the format required in the script. Hence the

batch script corresponding to the process affinity of Fig. 4 is obtained by replacing the

blue coloured lines in Tab. III with the following ones

12

export I_MPI_DEBUG=5

export I_MPI_PIN_DOMAIN=[7,1c0,7000,1c0000]

export OMP_NUM_THREADS=3

export KMP_AFFINITY=verbose,compact

1. Reference

The available options for I MPI DOMAIN=<size> are

• <size>=omp, auto, <n>

and for I MPI PIN ORDER=<order> are

• <order>=compact, bunch, scatter, spread, range.

For more details consult the reference guide [5].

II. SINGLE-NODE SCALING RESULTS IN MARCONI

We already noted in the introduction that, under NUMA architectures, a processor

(core) can access its own local memory (within the socket) faster than non-local memory

(across sockets). Therefore, as also emphasized there, pinning affinity strategies can be of

importance performance-wise. However, the choice of the best process affinity obviously

depends on the code being used. If an algorithm implies strong local data dependencies

and high arithmetic intensities (CPU-bound), then using a compact affinity to have the

neighbouring processes mapped as closely as possible in terms of the hardware cores is

probably advantageous. On the other hand, if access to main memory is the bottleneck of

the algorithm (memory-bound), then having the processes distributed over both sockets

with a scatter or bunch affinity is most probably a better solution, since within one socket,

only half the memory bandwidth of the full node can be achieved.

Here we shall test these concepts in practice by using the hybrid MPI/OpenMP REF-

MULXP code [1], whose underlying memory-bound algorithm makes it well suited to

illustrate the effect of the different process affinities on the overall performance. At the

same time, it provides a real-world example with an actual finite-differences-time domain

(FDTD) wave-propagation production code, which is used for physics studies. Examples

of similar analysis using the standard STREAM benchmark [2] can be found elsewhere.

Being that REFMULXp can be compiled as a pure threaded code using OpenMP, as

a pure MPI code or using both paradigms for a hybrid parallel configuration, it allows us

13

0.001

0.01

1 2 4 8 16 32

T
im

e
pe

r
it

er
at

io
n

(s
)

nb processes (cores)

REFMULXp strong scaling (ICC, IMPI) (1500x1024 grid; 120.000 iterations)

cmpct OMP

cmpct MPI

cmpct HYB

scatter OMP

bunch MPI

bunch HYB

ideal

FIG. 5. MARCONI intra-node strong scaling results of REFMULXp using different parallelization

paradigms (pure OpenMP, pure MPI and hybrid MPI/OpenMP) with several process binding

affinities. The hybrid configuration has four MPI tasks and varies the number of threads, which

corresponds to the examples given in Figs. 3–4 when three threads are used.

to test all three cases separately and then compare them. This is what is shown in Fig. 5.

A detailed discussion of the results, for which better statistics than the “single run per

data point” used here would be required, goes beyond the scope of this writeup. Instead,

what is intended is to highlight the influence of the pinning strategies on the performance

of the code. It is clear from the plot that, as expected, when the processes are distributed

compactly on the hardware cores, the time to run an REFMULXp simulation is higher

than when they are evenly distributed across sockets. The two main reasons which justify

this difference are that, to access the full main memory bandwidth both sockets need to

be used, and that the main memory bandwidth increases nonlinearly with the number

of cores used, with roughly 8 cores per socket being enough to saturate it within each

socket for the algorithm at hand. In light of this, it is easy to understand that a scatter or

bunch process affinity, which always distributes the work load evenly among both sockets,

provides a higher bandwidth per core value than a compact affinity, for which the first

socket necessarily has a heavier load, except when the full node is used. The maximum

difference is therefore yielded when exactly half a node is used (18 cores).

Another concept whose effect, although less relevant, still seems to be measurable on

14

this algorithm, is the data locality. Comparing the compact and scatter affinities for the

pure threaded case when the whole node is used (rightmost point in the red curves), it

seems to be advantageous to have consecutive threads placed in consecutive cores, rather

than scattering them across sockets (recall the difference between Figs. 1(right) and 2).

III. SUMMARY AND OUTLOOK

This writeup was made to provide practical guidelines on how to use the process pin-

ning options within the Intel MPI library together with the PBS batch queueing system

available on the MARCONI supercomputer. Examples of scripts for pure OpenMP, pure

MPI and hybrid OpenMP/MPI cases were given for process affinities which are typically

relevant for the codes used within the community. Their impact on code performance

was then illustrated with strong scaling results from an FDTD production code on MAR-

CONI. For more detailed information on the Intel MPI library and OpenMP environment

variables, the reader is referred to the corresponding technical reference guides listed in

the bibliography.

IV. ACKNOWLEDGEMENTS

This work has been carried out within the framework of the EUROfusion Consortium

and has received funding from the Euratom research and training programme 2014-2018

under grant agreement No 633053. The views and opinions expressed herein do not nec-

essarily reflect those of the European Commission.

[1] F. da Silva, M. Campos Pinto, B. Desprs and S. Heuraux, J. Comp. Physics, 295: 24-45 (2015).

[2] John D. McCalpin “STREAM: Sustainable Memory Bandwidth in High Performance Comput-

ers” University of Virginia (1991-2007)

[3] https://software.intel.com/en-us/node/528816

[4] https://software.intel.com/en-us/node/528818

[5] https://software.intel.com/en-us/node/528819

https://software.intel.com/en-us/node/528816
https://software.intel.com/en-us/node/528818
https://software.intel.com/en-us/node/528819

15

M
a
ch

in
e
 (

1
2

7
G

B
)

N
U

M
A

N
o
d

e
 P

#
0

 (
6

3
G

B
)

S
o
ck

e
t

P
#

0

L3
 (

4
5

M
B

)

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

0

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

2

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

3

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

8

P
U

 P
#

5

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

9

P
U

 P
#

6

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
0

P
U

 P
#

7

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
1

P
U

 P
#

8

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
6

P
U

 P
#

9

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
7

P
U

 P
#

1
0

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
8

P
U

 P
#

1
1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
9

P
U

 P
#

1
2

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

C
o
re

 P
#

2
0

P
U

 P
#

1
3

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
4

P
U

 P
#

1
4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
5

P
U

 P
#

1
5

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

C
o
re

 P
#

2
6

P
U

 P
#

1
6

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
7

P
U

 P
#

1
7

N
U

M
A

N
o
d

e
 P

#
1

 (
6

4
G

B
)

S
o
ck

e
t

P
#

1

L3
 (

4
5

M
B

)

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

1
8

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1
9

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

2
0

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

2
1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

2
2

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

8

P
U

 P
#

2
3

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

9

P
U

 P
#

2
4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
0

P
U

 P
#

2
5

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
1

P
U

 P
#

2
6

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
6

P
U

 P
#

2
7

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
7

P
U

 P
#

2
8

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
8

P
U

 P
#

2
9

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

1
9

P
U

 P
#

3
0

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

C
o
re

 P
#

2
0

P
U

 P
#

3
1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
4

P
U

 P
#

3
2

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
5

P
U

 P
#

3
3

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

C
o
re

 P
#

2
6

P
U

 P
#

3
4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

C
o
re

 P
#

2
7

P
U

 P
#

3
5

In
d

e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
u
e
 2

0
 S

e
p

 2
0

1
6

 1
1

:1
3

:4
4

 A
M

 C
E
S

T

F
IG

.
6.

S
ch

em
at

ic
s

of
a

M
A

R
C

O
N

I
n

o
d

e
ob

ta
in

ed
u

si
n

g
th

e
h
w

lo
c

so
ft

w
a
re

p
a
ck

a
g
e,

b
y

in
v
o
k
in

g
th

e
co

m
m

a
n

d
:

“l
s
t
o
p
o
-
-
n
o
-
i
o
-
-
n
o
-
i
c
a
c
h
e
s
l
s
t
o
p
o
m
a
r
c
o
n
i
”.

N
ot

e
th

e
d

iff
er

en
ce

b
et

w
ee

n
th

e
(s

om
ew

h
at

o
d

d
)

p
h
y
si

ca
l

n
u

m
b

er
in

g
o
f

th
e

co
re

s
(C
o
r
e
P
#
),

co
m

p
a
re

d
to

th
e

lo
g
ic

a
l

n
u

m
b

er
in

g
o
f

th
e

p
ro

ce
ss

in
g

u
n

it
s

(P
U
P
#
)

b
el

ow
.

	On process pinning options: MARCONI-FUSION
	Contents
	Introduction: process binding on MARCONI
	OpenMP thread affinity
	MPI task affinity
	Reference

	Hybrid task/thread affinity
	Reference

	Single-node scaling results in MARCONI
	Summary and outlook
	Acknowledgements
	References

