
1© 2018 The MathWorks, Inc.

Accelerating and Parallelizing MATLAB Code on HPC

Infrastructure

Francesca Perino – Sam Marshalik - Sergio Obando Quintero

Application Engineering Team

2

Choose a Parallel Computing Solution

▪ Do you want to process your data faster?

▪ Do you want to offload to a cluster?

▪ Do you want to scale up your big data calculation?

3

Practical Application of Parallel Computing

▪ Why parallel computing?

▪ Need faster insight on more complex problems with larger datasets

▪ Computing infrastructure is broadly available (multicore desktops, GPUs, clusters)

▪ Why parallel computing with MATLAB

▪ Leverage computational power of more hardware

▪ Accelerate workflows with minimal to no code changes to your original code

▪ Focus on your engineering and research, not the computation

4

Parallel Computing Paradigm
Multicore Desktops

Core 3

Core 1 Core 2

Core 4

Worker Worker

Worker Worker

MATLAB multicore

http://www.mathworks.com/discovery/matlab-multicore.html

5

Cluster

Parallel Computing Paradigm
Clusters

Worker Worker Worker Worker Worker Worker

Worker Worker Worker Worker Worker Worker

WorkerWorkerWorkerWorkerWorkerWorker

Worker Worker Worker Worker Worker Worker

6

Migrate execution to a cluster environment

MATLAB MATLAB Distributed Computing Server

GPU

Multi-core CPU

Parallel Computing Toolbox

GPU

Multi-core CPU

7

Cluster Computing Paradigm

▪ Prototype on the desktop

▪ Integrate with existing

infrastructure

▪ Access directly through

MATLAB

User Desktop Headnode
Compute

Nodes

Parallel Computing Toolbox

MATLAB

MATLAB Distributed Computing Server

8

Parallel Computing Paradigm
NVIDIA GPUs

Using NVIDIA GPUs

MATLAB Desktop

(client)

GPU cores

Device Memory

9

Steps for writing a MATLAB parallel code

Technology / Product

1. Best practices in programming
▪ Identify bottlenecks (e.g. Profiler, Code analyzer)
▪ Vectorization & pre-allocation

2. Better algorithms
▪ Different algorithmic approach to solve the same problem
▪ The most recent MATLAB release

3. More processors, cores, and GPUs
▪ Utilize high level parallel constructs (e.g. parpool, parfor)
▪ Scale to clusters, grids, and clouds

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

10

Example: Block Processing Images

▪ Calculate a function at grid points

▪ Take the mean of larger blocks

11

Best Practices

▪ Profile your code

▪ Minimize file I/O

▪ Reuse existing graphics components

▪ Avoid printing to Command Window

12

Access Multiple Files to Import Specific Columns

13

Access Multiple Files to Import Specific Columns

14

Steps for writing a MATLAB parallel code

Technology / Product

1. Best practices in programming
▪ Identify bottlenecks (e.g. Profiler, Code analyzer)
▪ Vectorization & pre-allocation

2. Better algorithms
▪ Different algorithmic approach to solve the same problem
▪ The most recent MATLAB release

3. More processors, cores, and GPUs
▪ Utilize high level parallel constructs (e.g. parpool, parfor)
▪ Scale to clusters, grids, and clouds

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

15

Exercise: Birthday Paradox

▪ What is the probability that in a group of 23 randomly selected individual, at

least two of them will share the same birthday?

16

Exercise: Birthday Paradox Implementation

▪ Profile runBirthdaySum.m

▪ Edit runBirthdayUnique1.m

– TODO: without a FOR loop create a list

with a random birthday for each

member in the group

▪ Edit runBirthdayVec.m

– TODO: try a different algorithmic

approach based on |sort| to solve the

same problem

17© 2018 The MathWorks, Inc.

Parallel and Distributed Computing with MATLAB

18

Steps for writing a MATLAB parallel code

Technology / Product

1. Best practices in programming
▪ Identify bottlenecks (e.g. Profiler, Code analyzer)
▪ Vectorization & pre-allocation

2. Better algorithms
▪ Different algorithmic approach to solve the same problem
▪ The most recent MATLAB release

3. More processors, cores, and GPUs
▪ Utilize high level parallel constructs (e.g. parpool, parfor)
▪ Scale to clusters, grids, and clouds

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

web(fullfile(docroot, 'matlab/matlab_prog/techniques-for-improving-performance.html'))

19

Programming Parallel Applications

▪ Built-in multithreading

– Automatically enabled in MATLAB since R2008a

– Multiple threads in a single MATLAB computation engine

▪ Parallel-enabled MATLAB Toolboxes

– Enable parallel computing support by setting a flag or preference

..., ‘UseParallel’, true)

20

Parallel Computing

TOOLBOXES

Worker

Worker

Worker

Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

21

Parallel-enabled Toolboxes (MATLAB® Product Family)
Enable acceleration by setting a flag or preference

Optimization

Estimation of gradients

Statistics and Machine Learning

GPU-enabled functions, parallel

training

Neural Networks

Deep Learning, Neural Network

training and simulation

Image Processing

Batch Image Processor, Block

Processing, GPU-enabled functions

Computer Vision
Bag-of-words workflow

Signal Processing and Communications
GPU-enabled FFT filtering, cross

correlation, BER simulations

Other Parallel-enabled Toolboxes

http://www.mathworks.com/products/parallel-computing/parallel-support.html

22

Programming Parallel Applications

▪ Built in support

– ..., ‘UseParallel’, true)

▪ Simple programming constructs

– parfor, batch

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

23

Embarrassingly Parallel: Independent Tasks or Iterations

▪ No dependencies or communication between tasks

▪ Examples:

– Monte Carlo simulations

– Parameter sweeps

– Same operation on many files

Time Time

24

Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

25

Example: Estimate 𝝅 using the Buffon-Laplace method

26

Factors Governing the Speedup of parfor Loops

▪ No speedup because computation time too short

▪ Execution may be slow because of

• Memory limitations (RAM)

• File access limitations

▪ Implicit multithreading

• MATLAB uses multiple threads for speedup of some operations

• Use Task Manager or similar on serial code to check on that

▪ Unbalanced load due to iteration execution times

• Avoid some iterations taking multiples of the execution time of other iterations.

27

Programming Parallel Applications

▪ Built in support

– ..., ‘UseParallel’, true)

▪ Simple programming constructs

– parfor, batch

▪ Full control of parallelization

– spmd, parfeval

E
a
s
e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

28

Datatype Memory

Location

Use case

tall Disks

Pre-processing, statistics, machine learning

distributed Cluster

Sparse and dense numerics

gpuArray GPU

GPU computations

Datatypes for Scaling Data

Represent data not in “normal” memory

29

Distributed Arrays

MATLAB and Parallel Computing Toolbox MATLAB Distributed Computing Server

parpool(‘local’)

x = A\b;

% prototype with small A,b

% A,b are distributed arrays

parpool(<cluster>)

x = A\b;

% For large A,b

% A,b are distributed arrays

Develop applications once, change run environment by changing the profile

11 26 41

12 27 42

13 28 43

15 30 45

16 31 46

17 32 47

20 35 50

21 36 51

22 37 52

30

Example: Estimate 𝝅 using the Buffon-Laplace method

▪ We want to speed up the estimation of 𝝅 for 109 trials

– Define a 10^9-by-1 codistributed arrays, distributed by columns with a uniform partition

scheme.

– Create on x workers

›x0 = a * rand(nNeedles,1,codistributor);

›y0 = b * rand(nNeedles,1,codistributor);

›phi= 2 * pi * rand(nNeedles,1,codistributor);

31

Offloading Computations

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

32

Offloading Computations

▪ Send desktop code to cluster

resources

– No parallelism required within code

– Submit directly from MATLAB

▪ Leverage supplied infrastructure

– File transfer / path augmentation

– Job monitoring

– Simplified retrieval of results

▪ Scale offloaded computations

MATLAB

code

Cluster

Computer Cluster

Scheduler

33

Migrate to Cluster / Cloud

▪ Use MATLAB Distributed Computing Server

▪ Change hardware without changing algorithm

34

MATLAB

Desktop (Client)

Offloading Serial Computations with batch

▪ Offload the computation to a workstation targets compute-intensive applications

Result

Work

Worker

batch(…)

35

Offload and Scale Computations with batch with a Parallel Pool

▪ batch jobs are particularly suitable when you are working on a compute

cluster.

MATLAB

Desktop (Client)

Result

Work

Worker

Worker

Worker

Worker

batch(…, 'Pool',…)

36

Estimate 𝝅 using the Buffon-Laplace method

37

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Profile
(Local)

MATLAB

code

1. Prototype code

38

Use MATLAB Distributed Computing Server

1. Prototype code

2. Get access to an enabled cluster
Cluster

Computer Cluster

Scheduler

Profile
(Cluster)

39

Use MATLAB Distributed Computing Server

1. Prototype code

2. Get access to an enabled cluster

3. Switch cluster profile to run

on cluster resources

MATLAB

Desktop (Client)

Local

Desktop Computer

Profile
(Local)

Cluster

Computer Cluster

Scheduler

Profile
(Cluster)

MATLAB

code

40

▪ Offload computation:

– Free up desktop

– Access better computers

▪ Scale speed-up:

– Use more cores

– Go from hours to minutes

▪ Scale memory:

– Utilize tall arrays and distributed arrays

– Solve larger problems without re-coding algorithms

Cluster

Computer Cluster

Scheduler

Take Advantage of Cluster Hardware

MATLAB

Desktop (Client)

41

Summary

▪ Easily develop parallel MATLAB applications without being a parallel

programming expert

▪ Speed up the execution of your MATLAB applications using additional

hardware

▪ Develop parallel applications on your desktop and easily scale to a cluster

when needed

42

Parallel Computing with MATLAB – Beyond PARFOR

Well-known features

▪ parallel-enabled toolboxes

▪ parfor/parsim

▪ gpuArray

Full spectrum of support

▪ batch submission, jobs and tasks
batch, createJob, createTask

▪ asynchronous queue for feval
parfeval

▪ parallel support for big data
tall, mapreduce

▪ distributed arrays (“global arrays”)
distributed, codistributed

▪ message passing
labSend, labReceive

tutorials

http://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html

43

Some Other Valuable Resources

▪ MATLAB Documentation

– MATLAB Advanced Software Development Performance and Memory

– Parallel Computing Toolbox

▪ Parallel and GPU Computing Tutorials

– https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-

97719.html

▪ Parallel Computing on the Cloud with MATLAB

– http://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-

cloud/

http://www.mathworks.com/help/matlab/performance-and-memory.html
http://www.mathworks.com/help/distcomp/index.html
https://www.mathworks.com/videos/series/parallel-and-gpu-computing-tutorials-97719.html
http://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/

44

45

46

47

Scheduling Jobs and Tasks

Scheduler

Job

Results

Worker

Worker

Worker

Worker

Task

Result

Task

Task

Task

Result

Result

Result

MATLAB

Desktop (Client)

48

Example: Scheduling different solvers on the same ODE system

49© 2018 The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other

product or brand names may be trademarks or registered trademarks of their respective holders. © 2015 The MathWorks, Inc.

